

U.S. Small Business Administration
Office of the Chief Information Officer
Office of Information Systems Support

SBA ColdFusion Programming Standards

Version: 3.2.3
Modified: 11/06/2008

SBA ColdFusion Programming Standards

Page 2 of 127 Version: 3.2.3
Table of Contents Modified: 11/06/2008

TABLE OF CONTENTS:

1 Introduction... 7

1.1 Revision History .. 8
2 Naming Conventions .. 10

2.1 File Names... 10
2.1.1 Display Files (dsp_ prefix).. 10
2.1.2 Action Files (act_ prefix) .. 10
2.1.3 Use CFLOCATION to Pass Off from an Action File to a Display File................................ 10
2.1.4 Utility Files (various prefixes) .. 11
2.1.5 Always Match Case in File Names ... 11
2.1.6 Backup Files.. 11

2.2 Variable Names ... 12
2.2.1 Database Column Names .. 12
2.2.2 Datasource Names... 12
2.2.3 Temporary Control Variables.. 12
2.2.4 Logic Variables ... 12
2.2.5 XML Variables.. 13
2.2.6 Standardized Variable Names Used by Shared Code ... 13

3 Coding Standards, Application-Specific Code ... 14
3.1 Application Model... 14

3.1.1 “Thin Client” and Client-Side Data Validation... 14
3.1.2 Server-Side Data Validation.. 14
3.1.3 Standardized Look-and-Feel ... 14
3.1.4 Our Goal Is 50% Shared Code .. 14
3.1.5 Externally Configurable Code...15

3.2 Application.cfm ... 17
3.2.1 When and Where Required ... 17
3.2.2 When Application.cfm Is Allowed in Subdirectories ... 17
3.2.3 Extending Application.cfm in a Subdirectory... 18
3.2.4 Initialization .. 18
3.2.5 More on Initialization – Variables Scope versus Request Scope ..19
3.2.6 Set Request.Version to Identify your Application’s Version Number.................................. 19
3.2.7 Never Use Client Scope – Requires a Waiver... 19
3.2.8 No Longer Any Need to Encrypt Application.cfm ... 19
3.2.9 Session Control (CF 4.x and 5.x) ..20
3.2.10 Session Control (CFMX) .. 21
3.2.11 Session Timeout.. 21
3.2.12 Session Conflicts in GLS.. 22

3.3 Security.. 24
3.3.1 Referrer Checks... 24
3.3.2 Logins (Usernames and Passwords).. 24
3.3.3 Data Validation for SQL ... 24
3.3.4 Shared (or “Generic”) Logins ... 25
3.3.5 Program Descriptions (Also Known As “Comment Headers”) .. 25
3.3.6 <form … method="post"> .. 25
3.3.7 Cookies.. 26
3.3.8 File Upload Restrictions.. 26

3.4 Database .. 27

SBA ColdFusion Programming Standards

Page 3 of 127 Version: 3.2.3
Table of Contents Modified: 11/06/2008

3.4.1 Structured Query Language (SQL) versus Stored Procedure Calls 27
3.4.2 Use CFTRANSACTION, not CFLOCK, to Lock Database Changes 27

3.5 Miscellaneous .. 28
3.5.1 Browser Support (HTML, CSS and JavaScript) ... 28
3.5.2 Section 508 Support .. 28

4 Coding Standards, Shared Code.. 29
4.1 SBA Look-and-Feel... 30

4.1.1 Screen Snapshot of SBA Look-and-Feel, Showing Page Regions.. 30
4.1.2 Regions of the Page and What They’re Called ... 31
4.1.3 Which Regions are Optional ... 31
4.1.4 How to Call the SBA Look-and-Feel Custom Tag ... 32
4.1.5 Controlling the MainNav Buttons with the Show Attribute.. 33
4.1.6 How to Specify Inline HTML versus Frames ... 34
4.1.7 When to Use Inline HTML and When to Use Frames .. 35
4.1.8 What Happens When MainNav Is NOT a Frame.. 35
4.1.9 What Happens When MainNav IS a Frame .. 35
4.1.10 HOW to Use Inline HTML and HOW to Use Frames.. 36
4.1.11 What CSS Class Names to Use... 40
4.1.12 The Screen Resizing Feature .. 41
4.1.13 The TextOnly Feature ... 41
4.1.14 The Automatic TextOnly Feature ... 42
4.1.15 Form Data Recovery ... 43
4.1.16 Features Requiring Some Knowledge of JavaScript... 46
4.1.17 MainNav as a Frame ...52
4.1.18 Using SBA Look-and-Feel on a Static HTML Page... 53
4.1.19 Read the Custom Tags to Get More Information.. 54

4.2 Stored Procedure Call Files ... 55
4.2.1 Make Sure that the SPC Files Have Been Generated.. 55
4.2.2 Request Regeneration of SPC Files Whenever Parameter Lists Change 55
4.2.3 Load Only the Columns You Need into the Variables Scope... 55
4.2.4 But Use Defaults Sensibly... 55
4.2.5 Use LogAct to make error messages more user-friendly .. 56
4.2.6 Use Variables.TxnErr for Transaction Control ... 56
4.2.7 Retrieving Single Result Sets.. 56
4.2.8 Retrieving Multiple Result Sets ..57
4.2.9 Calling a Stored Procedure in a Different Database.. 58
4.2.10 How to use it ... 59

4.3 Logging.. 60
4.3.1 Turning On Logging Support – The “Master Switch” .. 60
4.3.2 What to Use as the System Name – GLS Systems.. 61
4.3.3 What to Use as the System Name – Non-GLS Systems ... 61
4.3.4 All Developers Will Be Application Administrators in Development.................................. 62
4.3.5 The CF/Logging Admin Pages.. 62
4.3.6 Logging Levels – Debug, Info, Warn, Error and Fatal ... 63
4.3.7 Manual Logging Routines That You’re Required To Add ... 63
4.3.8 Manual Logging Routines That Are Optional... 65
4.3.9 Where the Log Files Reside .. 66
4.3.10 Cooperating With Other Developers in Development .. 66

4.4 Standard Callbacks .. 67
4.4.1 dsp_LookupZipToDropdown.cfm... 67
4.4.2 dsp_LookupZipToDropdown.ajax.cfm... 69
4.4.3 dsp_LookupNAICSDescTxt.ajax.cfm ..70

SBA ColdFusion Programming Standards

Page 4 of 127 Version: 3.2.3
Table of Contents Modified: 11/06/2008

4.4.4 get_ArrayUserRoles.cfm...71
4.4.5 get_GLSSession.cfm... 72
4.4.6 Future Callbacks.. 73

4.5 Standard CFIncludes ... 74
4.5.1 bld_ServerCachedQueries.cfm.. 74
4.5.2 dsp_errmsg.cfm... 76
4.5.3 dsp_options.cfm .. 76
4.5.4 dsp_sbalookandfeel_variables.cfm ... 78
4.5.5 get_actual_server_name.cfm... 78
4.5.6 get_sbalookandfeel_variables.cfm .. 78
4.5.7 inc_starttickcount.cfm... 78
4.5.8 inc_totaltickcount.cfm... 78
4.5.9 OnRequestEnd.cfm ... 78
4.5.10 put_sbalookandfeel_messages.cfm... 79
4.5.11 put_sbalookandfeel_variables.cfm..79

4.6 Standard JavaScripts.. 80
4.6.1 Use onChange, Not onBlur ... 80
4.6.2 Code for Reuse in the Form’s onSubmit ... 80
4.6.3 EditDate... 82
4.6.4 EditDateNonFuture ... 82
4.6.5 EditList.. 82
4.6.6 EditMask ... 82
4.6.7 EditPronetUserid ... 82
4.6.8 EditState .. 82
4.6.9 EditTin... 82
4.6.10 ClearForm ... 82
4.6.11 DumpObject.. 82
4.6.12 FormSynopsis ... 82
4.6.13 GetXMLHttpRequest.. 82
4.6.14 LookupNAICSDescTxt .. 82
4.6.15 LookupZipToDropdown... 83
4.6.16 NumToDollars .. 83
4.6.17 RoundTo2DecimalPlaces.. 83
4.6.18 RoundToNearest ... 83
4.6.19 RoundUpToNearest .. 83
4.6.20 SetFormEltValue .. 83

4.7 Standard UDFs and Other Utilities.. 84
4.7.1 bld_GetCFDirectoryActionList.cfm ... 84
4.7.2 bld_GetCFFileActionRead.cfm... 84
4.7.3 bld_JaguarUDFs.cfm .. 84
4.7.4 bld_ListToArrayAllowingNulls.cfm... 84
4.7.5 bld_ProcessDirectory.cfm... 84
4.7.6 val_char.cfm.. 84
4.7.7 val_date.cfm.. 84
4.7.8 val_email.cfm.. 84
4.7.9 val_num.cfm.. 84
4.7.10 val_phone.cfm... 84
4.7.11 val_state.cfm... 84
4.7.12 val_taxid.cfm .. 84
4.7.13 val_url.cfm.. 84
4.7.14 val_zip.cfm ... 84

5 Best Practices .. 85

SBA ColdFusion Programming Standards

Page 5 of 127 Version: 3.2.3
Table of Contents Modified: 11/06/2008

5.1 Improving Performance... 85
5.1.1 Eliminate Redundancies, Share Code ... 85
5.1.2 Eliminate Redundancies, Share Code, part 2 .. 86
5.1.3 Limit Record Set Size ... 86
5.1.4 Caching Result Sets... 86
5.1.5 Explicitly Scope Variables .. 86

5.2 Code for Ease of Maintenance... 87
5.2.1 Parameterize Directory Names and Paths ... 87
5.2.2 Indent Properly.. 88
5.2.3 Line Up Code to Make It Easier to Read and Spot Errors .. 88
5.2.4 Define Configuration Parameters at Top of Page ... 89
5.2.5 Make LOTS of Things Configurable .. 89
5.2.6 Document Your Code: Use “Hints” .. 90
5.2.7 Document Your Code: Use Comments for Actual Comments ... 90
5.2.8 Document Your Code: Use Descriptive Datanames ... 90

5.3 The “Right Way To Do It” .. 91
5.3.1 Use CFLOCK to Lock Server, Application, and Session Variables 91
5.3.2 Structured Query Language (SQL) in JDBC .. 91
5.3.3 Checking for Existence of CGI Variables... 91
5.3.4 How to Break Out of Frames .. 92
5.3.5 How to Change the “RequestTimeout” of a Page ... 93
5.3.6 Dynamic HTML.. 94
5.3.7 How to Create an HTML Equivalent of a Graphic for TextOnly Mode 101
5.3.8 BLOBs, CLOBs and Text Datatypes, and CFQueryParam... 104
5.3.9 SQL Injection, Data Validation and CFQueryParam.. 105
5.3.10 Cross-Browser HTML and JavaScript for Internet Sites .. 107
5.3.11 Suppressing Extraneous “White Space” ... 110

5.4 Debugging ... 113
5.4.1 Don’t Turn On CF Debugging Unless You Absolutely Have To 113
5.4.2 Use CFDUMP to Debug in ColdFusion MX .. 113

6 Application Deployment ... 114
7 Programming Cautions (“Gotchas” We’ve Discovered) .. 115

7.1 All Versions of ColdFusion... 115
7.1.1 CFPROCRESULT .. 115
7.1.2 Calling a Java Method... 115
7.1.3 Frequent Server Crashes.. 115

7.2 ColdFusion 4.5 .. 116
7.2.1 The “Randomly Zeroed Out Money Fields” Problem... 116
7.2.2 Sometimes You Get Errors on the Next Database Call... 116
7.2.3 Sybase Error 3621 ... 116
7.2.4 “Unknown Connect error!” ... 116

7.3 ColdFusion MX 6.x (and Conversion to MX in General) ... 117
7.3.1 JDBC: Like ODBC, Delimit Non-Numeric Literals with Single Quotes 117
7.3.2 JDBC: Parameters to Stored Procedures Must Be in Correct Order 117
7.3.3 JDBC: Designation of Input and Output Parameters Must Be Correct............................... 117
7.3.4 JDBC: CFSQLTYPE=”CF_SQL_DATE” Is No Longer Supported 117
7.3.5 JDBC: Nullstring Passed in CFPROCPARAM Behaves Like Space 118
7.3.6 JDBC: the Syntax “= NULL” Is No Longer Allowed... 118
7.3.7 JDBC: NULL Is Not a Value of a List, Either .. 118
7.3.8 JDBC: Stored Procedures Behave Differently Because of JDBC....................................... 118
7.3.9 StructKeyList .. 119
7.3.10 JSessionId ... 119

SBA ColdFusion Programming Standards

Page 6 of 127 Version: 3.2.3
Table of Contents Modified: 11/06/2008

7.3.11 Periods in Variable Names..119
7.3.12 When Calling Java Methods, Datatype May Not Be String ... 119
7.3.13 The Data Validation for CFFORM Date Elements Is Incorrect 120

7.4 ColdFusion MX 7.x (and Conversion to 7.x) ..121
7.4.1 CR and LF Can No Longer Appear in CFLOCATION URLs.. 121
7.4.2 Double Slash in a Path Is No Longer Treated the Same as One Slash................................ 121
7.4.3 CFOUTPUT Mode Partially Propagates to Included Files ... 122
7.4.4 <cfset Variables.RequestTimeout = seconds> No Longer Works 122
7.4.5 Web Services: Arguments Scope Evaluated Ahead of Variables Scope 122
7.4.6 Web Services: Error Messages Have Gotten More Generic ... 122
7.4.7 Web Services: An Empty XML Namespace URL Crashes Axis.. 123
7.4.8 Web Services: Application.cfc OnRequest Messes Up Web Services................................ 123

8 Example Files.. 124
8.1 Web Page User Interfaces.. 124

8.1.1 Example GLS Application.cfm... 124
8.1.2 Example Non-GLS Application.cfm... 124
8.1.3 Example Display Page (dsp_xxx.cfm) .. 124
8.1.4 Example Display Page in a Frame (dsp_xxx.cfm) ..125
8.1.5 Example Action Page (act_xxx.cfm) ..125
8.1.6 Example OnRequestEnd.cfm .. 125

8.2 Web Services ... 125
8.2.1 Example CFC File (xxx.cfc or wbs_xxx.cfc).. 125
8.2.2 Example Included Function File (wbs_xxx.cfm) .. 125

9 Guidelines for Editing this Document .. 126
9.1 Headers and Footers .. 126
9.2 Use of Microsoft Word “Styles” Feature... 126
9.3 Page Breaks ... 127
9.4 Default Font and Size .. 127

SBA ColdFusion Programming Standards

Page 7 of 127 Version: 3.2.3
1. Introduction Modified: 11/06/2008

1 Introduction

This document describes a set of coding standards and recommendations for Agency ColdFusion
applications. The goals of these standards are to:

• secure corporate data, web applications and servers from (1) hackers and/or (2) unintentional
loss/damage of data;

• promote re-use of code;
• make code easy to read and understand; and
• ensure easier maintenance.

These standards are not intended to mandate functional organization of applications.

Request for waivers for any of these standards must:

• provide information on why the use of non-standard code is critical to the functionality of the
application;

• offer reasons as to why other solutions are not viable;
• pose no security threats; and
• be requested in writing to the Office of the Chief Information Officer, Chief, Productivity

Enhancement Staff.

Copies of waiver requests, approvals and/or denials should be kept with your application
documentation.

SBA ColdFusion Programming Standards

Page 8 of 127 Version: 3.2.3
1. Introduction Modified: 11/06/2008

1.1 Revision History

Starting with revision 3.0.4, this section will list all changes and modifications introduced to this
document since its original release, in reverse chronological order. Hence, the most recent modifications
and updates will be listed at the top of this section, respectively followed by less recent changes. These
changes are as follows:

 3.2.3 Added new section 4.2.10 information on how to generate SPC files.
 3.2.2 Updated section 4.5.5 to add information regarding variable Request.SlafDevTestProd

3.2.1 To complement 4.1.7, When to Use Inline HTML and When to Use Frames, added a 4-page
new section 4.1.10, How to use Inline HTML and How to Use Frames. Added information
about <cf_sbatree expandall="Yes"> to 4.1.16.3, AppNav DHTML Tree Using <cf_sbatree>
and <cf_sbatreeitem> (new feature). Expanded 4.4, Standard Callbacks to include
dsp_LookupZipToDropdown.ajax.cfm, dsp_LookupNAICSDescTxt.ajax.cfm and
get_GLSSession.cfm. Started to flesh out 4.6, Standard JavaScripts with more information
about the JavaScripts themselves. Created a new section under Best Practices, 5.3.6, Dynamic
HTML and put 2 existing headings (“How to Show and Hide Page Elements Dynamically”
and “How to Change Page Element Classes Dynamically”) under it. Also under the new
section, added Section 508 issues, the use of the DHTML navigation tree, putting data
elsewhere on the page, etc. Throughout the document, replaced “old look-and-feel” screen
snapshots with “new look-and-feel” equivalents.

3.2 Modified 3.5.1, Browser Support (the list of required browser support for public-facing
systems). Also modified entire section Error! Reference source not found., SBA Look-and-
Feel with “new look-and-feel” screen snapshots and explanations. Added a new section
4.1.18, Using SBA Look-and-Feel on a Static HTML Page (because that’s now possible).

3.1.2 Added a new section 3.2.12, Session Conflicts in GLS.

3.1.1 Revised and edited previous 3.1 version of this document for syntax and brevity.

3.1 Documented the standard cfinclude dsp_options.cfm. Clarified policies on having multiple
copies of Application.cfm. Clarified the limited acceptable uses of JavaScript. Added a large
new section under Application Model called Externally Configurable Code, which includes
the need for all GLS systems to be compatible with multiple roles. Expanded the explanation
of bld_ServerCachedQueries to include 32 new queries and its new naming convention.

3.0.8 Added new section 4.4, Standard Callbacks. Documented the new server callbacks
get_ArrayUserRoles and dsp_LookupZipToDropdown. Documented the new JavaScripts
SetFormEltValue and LookupZipToDropdown. Documented new cfinclude
bld_ServerCachedQueries.

3.0.7 Clarified that AutoSubmit="Yes" is actually no longer required on Welcome pages in section
4.1.14 Automatic Screen Resizing and TextOnly. Documented new subdirectories of /library
at the top of major chapter 4 Coding Standards, Shared Code. Added new subheading 5.3.4
How to Break Out of Frames and 5.3.10 Suppressing Extraneous “White Space”, to Best
Practices section. Augmented Best Practices section 5.3.5 with information about the new
custom tag cf_SetRequestTimeout. Added new major chapter 8 Example Files (for future
expansion).

3.0.6 Added a new section 5.3.6.6 How to Change Page Element Classes Dynamically.

SBA ColdFusion Programming Standards

Page 9 of 127 Version: 3.2.3
1. Introduction Modified: 11/06/2008

3.0.5 Added new section 3.5 for browser/levels and Section 508 support standards. This essentially
was to elevate browser support to a standard (because it is a standard), while leaving the
coding specifics in the Right Way to Do It section. Also added a new section Error!
Reference source not found. How to Show and Hide Page Elements Dynamically. Updated 6
Application Deployment to reflect that EAR and WAR file deployment are now available,
though not yet in use. Rebuilt Table of Contents section to reflect new pagination and section
numbering.

3.0.4 Added this Revision History section. Added extensively more information about how to call
<cf_sbalookandfeel>, its attributes, (especially the Show attribute, its relationship to button
names and JavaScripts that get invoked when the user presses the buttons), the DHTML Tree
custom tags (<cf_sbatree> and <cf_sbatreeitem>) for use in the AppNav region, how to write
server callbacks that execute in the AppHidden frame and how to code MainNav as a frame.
In the process, grouped together all <cf_sbalookandfeel> features that require knowledge of
JavaScript. Added new section 4.3 on how to enable an application for logging, which is a
new requirement for all applications.

SBA ColdFusion Programming Standards

Page 10 of 127 Version: 3.2.3
2. Naming Conventions Modified: 11/06/2008

2 Naming Conventions

Naming conventions are designed to quickly identify the purpose of each file, folder, directory, variable,
etc. Standard naming conventions will provide ease of maintenance and updates and assist in code
analysis.

2.1 File Names

In general, all file and folder/directory names visible to the public must be in lower case with no spaces,
and no special characters except underscores. Exceptions – files not visible to the public, such as
Application.cfm, OnRequestEnd.cfm (case sensitive under Unix), LocalMachineSettings.cfm and utility
files (see below).

2.1.1 Display Files (dsp_ prefix)

Display files must begin with dsp_ and will be the only files that contain information that the user will
see. These files can contain both CFML and HTML. Display files do not change anything on the server
side. They only display information to the user. Queries can still be run within the display files but these
queries can only obtain data, they cannot insert, update, or delete information on the server. Example:
dsp_search.cfm

The initially requested file of a set of display files is also called the display page. In ColdFusion, a page
can be composed of many files by the use of CFINCLUDE. Sometimes the terms page and file are used
interchangeably, especially where only one file is involved.

2.1.2 Action Files (act_ prefix)

Action files must begin with act_ and do not display any information to the user. They can be used for
many different purposes, but are most commonly used to change information on the server. Action files
can be used to insert, update, and delete data within a database or could be used to change other data such
as writing to a file. Example: act_insert_user.cfm

2.1.3 Use CFLOCATION to Pass Off from an Action File to a Display File

When they are done processing, action files pass off to display files via CFLOCATION. CFLOCATION
performs a “302 Redirect”, which sends a command to the browser to treat the display file as the response
of the action file. The browser responds by requesting the display file, which will be the most recently
requested file. Later, if the user does a Refresh (MSIE) or Reload (Netscape), the browser will re-request
the display file. It will not re-request the action file. This prevents multiple updates to the database. This
is also the reason why action files are kept separate from display files.

Therefore, an action file should never pass off to a display page by using CFINCLUDE, as a Refresh or
Reload would result in the re-execution of the action file, thereby causing multiple updates to the
database.

SBA ColdFusion Programming Standards

Page 11 of 127 Version: 3.2.3
2. Naming Conventions Modified: 11/06/2008

2.1.4 Utility Files (various prefixes)

In order to promote code sharing, commonly performed routines may be isolated into their own utility
files. Utility files are entered by CFINCLUDE, Custom Tag interface or CFINVOKE. Often, utilities
perform functions that don’t fall easily into act_ or dsp_ categories. In such cases, other prefixes that
describe the file’s function are allowed and encouraged:

bld_ builds a data structure and/or defines functions that manipulate that structure
fmt_ formats data, usually for display
get_ retrieves a value from a data structure
inc_ included file whose function is hard to characterize
qry_ performs a CFQUERY (rest of file name is generally the Query object’s name. e.g.

qry_GetNAICS.cfm builds query object GetNAICS)
put_ saves a value into a data structure
spc_ performs a CFSTOREDPROC (“spc” = “stored procedure call”)
val_ validates data
wbs_ Web Service (cfc suffix alone does not necessarily suggest that it’s a Web Service)

In general, you shouldn’t make up your own 3-letter prefix. Chances are, there already exists a prefix that
adequately describes your file’s function. If not, the proper new prefix can be decided upon and
documented in the list above.

2.1.5 Always Match Case in File Names

Certain file names receive special treatment by ColdFusion Server, namely, Application.cfm,
OnRequestEnd.cfm and, starting with version 7.0, Application.cfc. On all ColdFusion Servers, these
spellings must be exactly as shown. On Unix servers, where file names are case sensitive, they must be in
the exact case shown as well. Because it would inhibit moving files between Unix and Windows servers
to have case differences, the SBA naming standard is always to use the more restrictive case-sensitive
spelling for Unix, even on Windows.

Similarly, whenever there are references to files (in CFINCLUDE, in CFLOCATION, in CFFILE, in A
HREF, in IMG SRC, in SCRIPT SRC, etc), the path and file names’ case must match those of the path
and file exactly. For example, you may not CFINCLUDE a LocalMachineSettings.cfm file using
localmachinesettings.cfm. Although localmachinesettings.cfm would work under under Windows, it will
not work under Unix. Not matching case would interfere with moving the application to a Unix server. In
order to assure that SBA ColdFusion applications are independent of the platform on which they run, you
must always match case exactly, even on Windows servers.

Note that this restriction also applies to URLs in plain HTML. By Internet standard, the protocol (http,
https) and server name parts of URLs are case-insensitive, and by convention are generally given in lower
case. After the server name portion of the URL, however, the path and file parts of the URL are case
sensitive on Unix, and, thus, must be treated as case sensitive in your code, even on Windows servers.

2.1.6 Backup Files

Until we have a Source Code Control System, cfm backup file name format is filename.yyyymmdd.cfm,
if there is only one backup for a given date, or filename.yyyymmdd.1.cfm, filename.yyyymmdd.2.cfm,
etc, if there is more than one. In either case, cfm must be used as the suffix. The yyyymmdd portion of
this naming standard refers to the date of last modification, not the date you made the copy. The “Check-
In/Check-Out Utility” uses this naming convention.

SBA ColdFusion Programming Standards

Page 12 of 127 Version: 3.2.3
2. Naming Conventions Modified: 11/06/2008

2.2 Variable Names

2.2.1 Database Column Names

Wherever variables correspond to database column names in the SBA’s official databases (currently
Sybase), the variable names must be identical to the database column name in both spelling and case.
Where a rewrite is not immediately feasible, a “crosswalk document” must be written to identify which
variables in ColdFusion correspond to which columns in the database. A crosswalk document is simply a
tabular listing of ColdFusion names and their corresponding database names. Examples of ColdFusion
variable names adhering to database column name include: Form.LoanAppNmb, URL.LoanAppNmb,
Variables.LoanAppNmb, Session.LoanAppNmb, etc.

2.2.2 Datasource Names

When working on a shared development server, such as danube.sba.gov, the datasource names are
decided by the system administrators. When developing your own PC and can define your own
datasource, however, the current standard is to use the database name as the datasource (in the same case
if Unix). For example, the DVLP1.pronet database’s datasource would be pronet.

An exception is sbaref, which exists in the public tract (DVLP1, ADAPT1, WEBPROD1) and the
financial tract (DVLP1, TEST1, PROD1). The datasource login for sbaref on public tract servers must be
“sbaselect”, while the datasource login for sbaref on financial tract servers must be “cfnonfinforms”.
(Since cfnonfinforms has no power in the financial databases, this is overridden at runtime with the login
of the user, as resolved to a generic login by GLS.) So, sbaref presents a problem on DVLP1, the server
that’s on both the public and financial tracts. The solution is to define public_sbaref datasource with
sbaselect for use by fastpublic, hubzone3, pronet, technet, etc, and loggedin_sbaref with cfnonfinforms
for use by fast, loan, loanacct, loanapp, etc. If you need to define public_sbaref and/or loggedin_sbaref on
your PC, see the database group for the passwords to the sbaselect and/or cfnonfinforms generic logins,
respectively.

2.2.3 Temporary Control Variables

Because they are so frequently referenced, loop indexes and other control variables should generally be
kept “short and sweet”. Examples: i, j, Ctr, Idx, Pass, Temp, etc. Exception – in a shared utility file, local
control variables should be made longer and identified with the utility, so as to avoid potential conflicts
with control variables in the calling files. For example: get_MaxColWidth.cfm loops using MCWIdx as
its loop index, not Idx, just in case the calling file is already using Idx.

2.2.4 Logic Variables

OCIO is working out a set of standardized logic variables to be used to reference paths, datasources, etc,
so as to promote code sharing. The naming convention for standardized logic variables has not yet been
determined.

SBA ColdFusion Programming Standards

Page 13 of 127 Version: 3.2.3
2. Naming Conventions Modified: 11/06/2008

2.2.5 XML Variables

Like OISS Project Database Names, variables containing the contents of XML elements must be identical
to the element names, except during the transition between XML and database, where database names
again apply. (The CFSET statements that move data between database names and XML names act as the
“crosswalk”.) This is particularly important where an organization outside the SBA is defining the XML
element names according to their own naming conventions. Where the SBA defines the XML element
names, they can be made the same as the database table and column names, so that a crosswalk isn’t
required.

2.2.6 Standardized Variable Names Used by Shared Code

Certain variable names are expected by some of our shared code (CFINCLUDEs, custom tags, etc). As
you might expect, included files need standardized variable names more so than other types:
 Variable Used by Contains
• Variables.db SPC files datasource name
• Variables.dbtype SPC files “Sybase11” (if CF 4.5), ignored in CFMX
• Variables.username SPC files login to override datasource login (*)
• Variables.password SPC files login to override datasource login (*)
• Variables.ErrMsg SPC files output variable, generally passed to dsp_errmsg
• Variables.TxnErr SPC files an error occurred, explained in section 4.2.6
• Variables.LogAct SPC files “logical action” of SPC file, explained in section 4.2.5
• Variables.cfprname SPC files <cfprocresult name>, explained in section 4.2.7
• Variables.cfpra SPC files <cfprocresult> array, explained in section 4.2.8
• Request. SpcUsingCFError SPC files “Yes” or “No” (whether SPC files should error) (***)
• Variables.ErrMsg dsp_errmsg intentionally named the same as for SPC filesf
• Variables.Commentary dsp_errmsg for good things that happened, as opposed to ErrMsg
• Request.SlafTextOnly sbalookandfeel “Yes” or “No” (whether the user wants test only) (**)
• Request.version lastmodified application version number to be displayed

(*) On public tract database servers (DVLP1, ADAPT1, WEBPROD1), the datasource login is used for
selects, so the SPC files for stored procedures ending in “SelCSP” and “SelTSP” on public tract databases
do not override the datasource login.

(**) Automatic Text Only and Screen Resizing maintains the “Slaf” (“sbalookandfeel”) variables on your
behalf, so if you use the automatic feature, you normally don’t need to know any of the Slaf variable
names. An exception is Request.SlafTextOnly, which you would use to decide whether or not to display
graphics other than the ones normally displayed by <cf_sbalookandfeel>. For example, it’s typical to
display a graphic in a “welcome screen”. SBA look-and-feel knows nothing about this graphic and will
not suppress it for you. You have to code your own <cfif Request.SlafTextOnly> … <cfelse> … </cfif>
logic to suppress it. If you’re using the automatic feature, you can rely on Request.SlafTextOnly being
defined.

(***) Some older systems, such as HUBZones, were written without error recovery. They expected to
crash if an error occurred. On the public side of HUBZones, this was mitigated somewhat by coding an
error page and calling <cferror> to tell CF to use that page. Until they can be rewritten to recover from
errors, such systems can set Request.SpcUsingCFError to “Yes” to cause SPC file errors to crash.

SBA ColdFusion Programming Standards

Page 14 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

3 Coding Standards, Application-Specific Code

3.1 Application Model

The SBA’s programming model is to have a “thin client”, business rules only in server-side validation
(via stored procedures or application server), standardized look-and-feel and a goal of 50% shared code.

3.1.1 “Thin Client” and Client-Side Data Validation

Several things are implied by the term “thin client”. One is that we don’t use Java or plug-ins (such as
Flash) where HTML will do the job. (<cf_sbatree> and <cf_sbatreeitem>, which use DHTML, are a good
example.) Another is that JavaScript is used only in restricted ways, namely:

• Simple format restrictions in client-side data validation, such as disallowing alphabetic data in
numeric fields, requiring EIN to be in 99-9999999 format, etc.

• Dynamic HTML, such as showing and hiding sections of a page, changing the class of a CSS-
formatted display, etc.

• Providing running totals of numeric inputs as a service to the user, such as in balance sheets,
income statements, calculation of debenture amounts, etc.

• SBA look-and-feel navigation.
• Alerts and confirmations of user actions that have significant consequences.

OCIO has developed standard JavaScripts for client-side data validation, which shall be used, except in
the most application-specific circumstances. JavaScript will not be used for “business rules” logic, such as
complex cross-edits among form elements.

3.1.2 Server-Side Data Validation

There are 2 kinds of server-side validation, so-called “presave validation”, and business rules validation.
Presave validation encompasses only whether or not the incoming data will “fit into its database column”.
As such, it is redundant to client-side data validation in JavaScript, but needs to be done on the server
side, in case the user turns off JavaScript, and to prevent hacker attacks. Foreign key constraint checks,
which can’t be done on the client side, may also be necessary to prevent database errors at the time the
database delete, insert or update is performed. Business rules validation occurs only server side via stored
procedures or application server calls (Jaguar for security, for example). The goal is to perform business
rules validation in only one place. Distributing business rules out to the application or the client defeats
this goal and makes business rules harder to change, thereby rendering the SBA less responsive to change.

OCIO has developed standard includes and UDFs for server-side presave validation, which shall be used,
except in the most application-specific circumstances.

3.1.3 Standardized Look-and-Feel

OCIO has developed standard custom tags for look-and-feel, which shall be used.

3.1.4 Our Goal Is 50% Shared Code

Shared code promotes consistency, stability and rapid application development. OCIO’s goal is 50%
shared code.

SBA ColdFusion Programming Standards

Page 15 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

3.1.5 Externally Configurable Code

Initially, because there were no other mechanisms in place, configurations of SBA applications have been
conducted via hard-coded configuration parameters. However, over time this expedient, but less flexible,
approach is being replaced by techniques that allow configuration to be performed outside of the
application, with no source code changes whatsoever. Where such mechanisms already exist, or are
requested by management, they are mandatory.

3.1.5.1 Support for Multiple Roles, Privileges, Location Codes and Office Codes

The General Login System (GLS) allows a system to have multiple roles, privileges, location codes
and/or office codes associated with any given user. This design allows any system under GLS to be
configurable by IT Security regarding user rights and privileges Therefore:

Systems that run under GLS must not crash or behave improperly if a user has more than
one role, privilege, location code or office code.

If the behavior for one role is markedly different, it’s completely acceptable to expect the user to make a
choice. For example, in a time accounting application, a manager might have a role to see hours for all
subordinates, but may choose to see and enter data for only his or her own hours.

The same applies to privileges, location codes and office codes. For example, if a lender may enter loan
applications for 2 location codes (2 branches of a bank), you would have to require the user to choose one
of those 2 location codes when entering a new loan application.

But it is NOT acceptable to pick the first role, privilege, location or office the user has (in the name of
expediency), if doing so limits the user to only one role, privilege, etc, or causes the system to misbehave.

3.1.5.2 Reading External Parameter Tables

Some SBA databases (but not all) have tables for the specific purpose of external configuration. The
names of such tables typically begin with “IMPrmtr” (internal management, parameter). New parameter
types can be added to such tables as needed. Since database input/output is required to read such tables,
it’s a management decision as to what configuration parameters should be managed in this way. Check
with your supervisor as to how he/she wants to handle a new configuration parameter.

Also, some systems have external tables in flat files. The Electronic Lending system called E-Tran has
such files that translate XML element names to database names and provide database datatype
information. Their names are SBA_ETran.vvv.columns.txt and SBA_ETran.vvv.tables.txt, where vvv is
the version of the SBA_ETran XML specification. This design enables the definition of new versions of
SBA_ETran without source code modifications.

Another example of external configuration in files is the popular “LocalMachineSettings” technique for
varying configuration parameters on a server-by-server basis. These are normally not read as flat files, but
rather cfincluded.

SBA ColdFusion Programming Standards

Page 16 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

3.1.5.3 “New Style Logging”

“New Style Logging” is described at length in Section 4.3 of this document (as just “Logging”). It uses
the highly efficient Java logging software log4j, which allows logging to be turned on or off externally.

Where systems have coded their own logging routines using <cffile action="append">, these must be
converted to promote the use of the new logging routines.

3.1.5.4 Database-Driven Form Elements, with Cached Queries

Wherever codes are used to conserve space in the database, we have “definition tables”, also known as
“code tables” or “type tables”, to translate codes to English text equivalents. When you have to display
form elements (drop-down menus, checkboxes and/or radio buttons) to choose among these codes, you
are required to use the database, not hard-coded HTML, to generate those form elements.

Because this imposes a database input/output penalty, small shared tables that don’t change much are
cached in the Server scope. This makes them available to all SBA systems, those that run under GLS and
others that don’t. See Section 4.5.1 for a more detailed explanation.

3.1.5.5 What Can’t Be Externally Configured

There will always be a few things that cannot be externally configured.

For example, in systems that run under GLS, the GLS login process itself uses Jaguar to retrieve database
login names. Therefore, the Jaguar host name and port number cannot be stored in a database parameter
table. At the time you need it, you wouldn’t have a database login with which to retrieve it. The same fact
applies to datasource name.

Due to a syntax restriction on ColdFusion, another element that cannot be externally configured is the
value clause of a <cfcase> tag. The value clause must contain a literal, not a variable. So although you
may WANT to say the following…

<!--- Configuration Parameters: --->
<cfset Variables.ProdServers = "riogrande,wocs41">
<cfset Variables.TestServers = "rouge,yukon">

...

<cfswitch expression="#Request.SlafServerName#">
<cfcase value="#Variables.ProdServers#"> ... </cfcase>
<cfcase value="#Variables.TestServers#"> ... </cfcase>
...
</cfswitch>

… you will have to say the following instead:

<cfswitch expression="#Request.SlafServerName#">
<cfcase value="riogrande,wocs41"> ... </cfcase>
<cfcase value="rouge,yukon"> ... </cfcase>
...
</cfswitch>

SBA ColdFusion Programming Standards

Page 17 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

3.2 Application.cfm

3.2.1 When and Where Required

Except for simple applications (that don’t require logging in) and Web Services (which don’t implicitly
cfinclude Application.cfm), you must use Application.cfm or LocalMachineSettings.cfm to set global
variables, for example, datasource name, timeouts for the application, and so on.

Even in simple applications, Application.cfm is a convenient place to set global configuration variables.

In an application that requires logging into GLS on the same server, you must have an Application.cfm
that calls the <cfapplication> tag with name="GLS". This is what allows the user’s GLS Session variables
to be passed to your application. In addition, you must verify that Session.GLSAuthorized is defined and
set to “Yes”. If not, the <cflocation> to /gls/dsp_mustlogin.cfm or /gls/dsp_login.cfm command must be
used.

In an application that requires logging into GLS on a different server, you needn’t have name="GLS" in
the <cfapplication> tag, because you can’t share Session variables across servers. Typically, you would
call the standard library routine get_ArrayUserRoles (see 4.4.4) to retrieve the user’s rights from the
server containing GLS.

3.2.2 When Application.cfm Is Allowed in Subdirectories

Normally, you must define one and only one Application.cfm file at the root directory of the application.
There are a couple of situations, however, where a subdirectory of your application may define its own
Application.cfm.

3.2.2.1 Turning Off GLS Login Requirement for Scheduled Tasks, Etc.

A Scheduled Task is normally done outside of the context of a login. (The login of the datasource is
typically used instead.) So, if the root directory of a GLS system is obeying standards (kicking the user
out of the directory if they’re not logged in), a Scheduled Task could never work. For this reason, we
typically create a subdirectory called /scheduled, as in the following example:

/myapp (root directory of GLS system)
/myapp/Application.cfm (kicks non-logged-in users out of directory)
/myapp/scheduled (Scheduled Tasks reside here)
/myapp/scheduled/Application.cfm (used in Scheduled Tasks)
/myapp/scheduled/act_scheduled1.cfm (not a standard name, made-up)
/myapp/scheduled/act_scheduled2.cfm (not a standard name, made-up)

When act_scheduled1.cfm or act_scheduled2.cfm executes, ColdFusion locates and uses Application.cfm
in /myapp/scheduled. ColdFusion does not progress up the file system tree any further, so it doesn’t see
the Application.cfm in /myapp. The instance of Application.cfm in /myapp/scheduled contains only
configuration parameters and such to be used in the context of a Scheduled Task. It does NOT kick the
user out of the directory for not being logged into GLS.

You might also need to turn off GLS login in a /experiments subdirectory, for example, that exists only in
development.

SBA ColdFusion Programming Standards

Page 18 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

3.2.3 Extending Application.cfm in a Subdirectory

The reason why we don’t want to have Application.cfm files in subdirectories is that they would all have
to be edited/maintained in sync with each other. The objective is to avoid producing multiple copies in
multiple location, but if a subdirectory contains a subsystem that needs to perform an action differently
from the rest of the system, it may have an Application.cfm THAT INCLUDES THE MAIN
APPLICATION.CFM and extends it. For example, this Application.cfm file extends its parent by kicking
out users who have not yet logged in:

<cfinclude template="../Application.cfm">
<cfif NOT Variables.GLSAuthorized>
 <cflocation url="/gls/dsp_login.cfm">
</cfif>

3.2.4 Initialization

To minimize locking, it’s advisable to move all Session variables into the Variables scope at this same
time. To minimize EXCLUSIVE locking, which slows down your entire application, never code
CFPARAMs or CFSETs of Session variables in a single CFLOCK. Instead, have 2 CFLOCKs, the first
one being READONLY, determining whether the second one is necessary, and a second one being
EXCLUSIVE to set the Session variables. For example, instead of coding:

<cflock scope="Session" type="Exclusive" timeout="30">
 <cfparam name="Session.xxx" default="123">
 <cfparam name="Session.yyy" default="abc">
 <!--- etc --->
 <cfset Variables.xxx = Session.xxx>
 <cfset Variables.yyy = Session.yyy>
 <!--- etc --->
</cflock>

(which always requires an exclusive lock), instead code:

<cfset Variables.SessionScopeWasInitialized = "No">
<cflock scope="Session" type="ReadOnly" timeout="30">
 <cfif IsDefined("Session.xxx")>
 <cfset Variables.xxx = Session.xxx>
 <cfset Variables.yyy = Session.yyy>
 <!--- etc --->
 <cfset Variables.SessionScopeWasInitialized = "Yes">
 </cfif>
</cflock>
<cfif NOT Variables.SessionScopeWasInitialized>
 <cfset Variables.xxx = "123">
 <cfset Variables.yyy = "abc">
 <!--- etc --->
 <cflock scope="Session" type="Exclusive" timeout="30">
 <cfset Session.xxx = Variables.xxx>
 <cfset Session.yyy = Variables.yyy>
 <!--- etc --->
 <cfset Variables.SessionScopeWasInitialized = "Yes">
 </cflock>
</cfif>

SBA ColdFusion Programming Standards

Page 19 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

3.2.5 More on Initialization – Variables Scope versus Request Scope

The difference between the Variables scope and the Request scope is that Request scope variables are
directly available in the Request scope to custom tags. As a general rule, this defeats one of the benefits of
custom tags, which is that their environment is largely separate from that of the caller.

In the wholesale copying of Session scope data into a scope that doesn’t require locking, keep in mind
that passing data to a custom tag should be a decision, not something that happens automatically.
Therefore, in general, the Variables scope should be used. When only a few data items are in the Request
scope, it makes it clear that their purpose is to be passed to a custom tag. In other words, in general, only
shared code defines Request scope variables.

3.2.6 Set Request.Version to Identify your Application’s Version Number

One variable that must be in the Request scope is Request.Version. That’s because a page within a frame
would call <cf_lastmodified> directly, but a page that doesn’t use frames would call <cf_sbalookandfeel>
in a way that would cause <cf_sbalookandfeel> to call <cf_lastmodified>. Therefore, if Version were in
the Variables scope, <cf_lastmodified> wouldn’t know whether to reference Caller.Version or
Caller.Caller.Version (if that’s even allowed). To keep the code simple, <cf_lastmodified> was
programmed to look for Request.Version, so that it wouldn’t matter how deeply the calls were nested.

Furthermore, setting Request.Version is a standard. In order to receive positive feedback from users,
managers must know which version the users are utilizing, so the version must be continuously updated..
You are to use “variable-length dotted decimal” format (number.number, number.number.number or
(rarely) number.number.number.number), which is a de facto industry standard for versions:

• Major versions (the first number) are for major changes in capabilities or how the application is
used. A change of major version is intended to attract attention and caution as to its release.
Examples: conversion of PRO-Net to ColdFusion, addition of Loan Servicing to ETran.

• First-level minor versions (the second number) are for feature enhancements that are significant.
Examples: addition of GSAAdvantage or NAICS code searches to PRO-Net, conversion of GLS
to SBA look-and-feel. There is always at least a first-level minor version. That is, the third major
version is “3.0”, not “3”.

• Second-level minor versions (the third number) are for bug fixes, not feature enhancements. It’s
okay to go from “3.0” to “3.0.1”.

• Third-level minor versions (the fourth number), if used, is for very minor bug fixes. It is generally
NOT okay to go from “3.0” to “3.0.0.1”, as that skips a level without explanation. Application
changes at this level should generally attract little or no attention from users.

3.2.7 Never Use Client Scope – Requires a Waiver

You may not use Client variables without a waiver to do so. If you are granted a waiver to use Client
variables, you must store them in a database, not in the registry. Since, as a general rule, you will NOT be
using Client variables, do not set ClientManagement to “Yes” in the CFAPPLICATION tag.

3.2.8 No Longer Any Need to Encrypt Application.cfm

See section 3.3.4 Shared (or “Generic”) Logins for information about how to retrieve logins from the
database. Because we now have more secure alternatives to hard coding logins in Application.cfm, the
previous SBA ColdFusion Standard requiring that Application.cfm always be encrypted is rescinded.

SBA ColdFusion Programming Standards

Page 20 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

3.2.9 Session Control (CF 4.x and 5.x)

OMB Web standards require that Federal Web sites never write cookies to the user’s hard drive, but the
CFAPPLICATION tag will do this if SETCLIENTCOOKIES=“Yes”. Also, CF’s handling of CFID and
CFToken can allow a “session swap”, either accidentally or maliciously, if another session’s CFID and
CFToken are coded on the URL. Finally, if not carefully thought out, the movement of Session variables
into the Variables scope can cause unnecessary Exclusive locking. The following code example shows
how to eliminate all 3 of these problems:

<cfapplication
name = "applicationname"
sessionmanagement = "Yes"
sessiontimeout = #CreateTimeSpan(0,1,0,0)#
setclientcookies = "No">

<cfset Variables.Initialized = "No">
<cflock scope="Session" timeout="30" type="ReadOnly">

<cfif IsDefined("Session.Initialized")>
<cfif (NOT IsDefined("Cookie.CFID")
 or (NOT IsDefined("Cookie.CFToken")
 or (Cookie.CFID IS NOT Session.CFID)
 or (Cookie.CFToken IS NOT Session.CFToken)>

<cflocation template="dsp_newsession.html" addtoken="No">
</cfif>
<cfset Variables.xxxx = Session.xxxx>
<cfset Variables.yyyy = Session.yyyy>
<!--- etc --->
<cfset Variables.Initialized = "Yes">

<cfelse>
<cfcookie name="CFID" value= "#Session.CFID#">
<cfcookie name="CFToken" value= "#Session.CFToken#">

</cfif>
</cflock>

<cfif NOT Variables.Initialized>

<cflock scope="Session" timeout="30" type="Exclusive">
<cfset Session.xxxx = "whatever">
<cfset Session.yyyy = "whatever">
<!--- etc --->
<cfset Session.Initialized = "Yes">
<cfset Variables.Initialized = "Yes">
</cflock>

</cfif>

SBA ColdFusion Programming Standards

Page 21 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

Explanation of Session Control Code Example:

 (1) The older practice of doing an Exclusive lock on the Session scope, just in case you have to initialize
Session variables, is wasteful and has adverse effects on performance, because every page has to do an
Exclusive lock. In this example, Variables.Initialized is used in a ReadOnly lock to determine whether the
Session scope has been initialized. The result is, in all cases except the very first time, when the session is
established, the Session scope locks will be ReadOnly. This is important because multiple ReadOnly
locks of the same scope are not queued. (A ReadOnly lock doesn’t have to wait for another ReadOnly
lock to be released. It can continue on as if there were no other lock. A ReadOnly lock will only wait on
an Exclusive lock.) The use of Variables.Initialized above assures that only on the very first time will
there be an Exclusive Session scope lock. (This was also described in section 3.2.4 Initialization.)

 (2) Only on the very first time will the CFID and CFToken cookies be sent to the browser. Because the
CFCOOKIE commands don’t have the EXPIRES attribute, they will be “session cookies” (held in
memory, not saved to the user’s hard drive), as per OMB and Federal CIO Council mandate.

(4) The SBA has pure HTML pages that establish a new session in the event that a session swap would
have occurred (in this case, “dsp_newsession.html”). An example is the one used by PRO-Net. The user is
nevertheless prevented from entering a CFML page with another user’s session.

(5) If your application runs under GLS, you don’t need to check for the existence of cookies and call
CFCOOKIE yourself. GLS will already have assured that the cookies exist. In fact, you can treat the non-
existence of Cookie.CFID or Cookie.CFToken as an error condition.

3.2.10 Session Control (CFMX)

Standards for the use of CFLOGIN and CFLOGINUSER have not yet been established. In the meantime,
the standards for CF 4.x and 5.x, above, will still work under ColdFusion MX, if you test for Java Session
Control:

<!--- Underscore appears in pre-MX SessionId --->
<cfif Find("_", Session.SessionId) GT 0>

<cfset Variables.SessionControl = "ColdFusion">
<cfelse>

<cfset Variables.SessionControl = "Java">
<!--- Flag to use JSessionId instead of CFID and CFToken. --->

</cfif>

3.2.11 Session Timeout

If the maximum Session timeout value for the server you are on has been exceeded, the default timeout,
not the maximum timeout, will be generated. Therefore, if your users need as much time as possible, ask
the administrator(s) of the server what the maximum timeout value is for that server, and specify that as
your CFAPPLICATION SESSIONTIMEOUT value. At present, all of our ColdFusion Servers are set for
1 hour for both maximum and default timeouts.

SBA ColdFusion Programming Standards

Page 22 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

3.2.12 Session Conflicts in GLS

As more and more systems are brought under GLS for their login, roles and permission controls, the
potential for one subsystem of GLS to conflict with others increases enormously. A subsystem of GLS
cannot treat the entire Session scope as its own property, because all subsystems of GLS share the Session
scope with all other subsystems of GLS.

3.2.12.1 Keep All Subsystem-Related Data in a Session Object

This has not been a standard in the past, but in the future, wherever any subsystem of GLS must keep 5 or
more data items in the Session scope, those items must be kept in an object in the Session scope (usually a
ColdFusion structure, or “struct”), not as individual variables. The name of the object will generally be
the same as the System name in Security (= the subsystem of GLS). If 2 subsystems have need to share
their Session variables, the name of the object must at least be descriptive of their shared function. (For
example, LoanOrig and LoanServ might choose to share their Session variables in a structure called
Session.ELend.)

If a subsystem of GLS has been following section 3.2.4, Initialization, and copying all Session variables
into the Variables scope to minimize locking, this new standard will not present much of a change: For
example, when PRO-Net’s admin functions were brought under GLS, many of its Session variable names,
such as “Session.AdminUser”, could have conflicted with other subsystems. But because it adhered to
section 3.2.4, the switchover to a structure was relatively easy. PRO-Net’s System name in Security was
“ProNet”, so the new structure to hold PRO-Net-related Session variables was called Session.ProNet.

Then, instead of saying:

<cflock scope="Session" type="ReadOnly" ...>
 <cfset Variables.AdminUser = Session.AdminUser>
 <cfset Variables.Admin8a = Session.Admin8a>
 <cfset Variables.AdminSDB = Session.AdminSDB>
 ((etc))
</cflock>

it was sufficient to say:

<cflock scope="Session" type="ReadOnly"...>
 <cfset Variables.AdminUser = Session.ProNet.AdminUser>
 <cfset Variables.Admin8a = Session.ProNet.Admin8a>
 <cfset Variables.AdminSDB = Session.ProNet.AdminSDB>
 ((etc))
</cflock>

The remaining PRO-Net code could simply reference Variables.AdminUser (or whatever) without being
concerned as to how it was being saved and restored in Application.cfm, and without having to relock the
Session scope.

As your subsystem of GLS is renovated from time to time to bring it up to newer standards (such as 4.3,
Logging), you must isolate your subsystem’s Session data from the rest of the Session scope using this
technique (if you’re keeping 5 or more data items in the Session scope).

SBA ColdFusion Programming Standards

Page 23 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

3.2.12.2 Don’t Alter Session Variables Set by Other Subsystems or by GLS Itself

Simply put, if you didn’t create it, then, generally speaking, you’re not allowed to alter it.

That goes for Session data created by GLS itself, such as the Session.IMUserTbl data about the user or
the default LocId associated with the user. So if you need to allow the user to change their default
Session.LocId or Session.PrtId, you need to send the user back to GLS, so that GLS can perform that
function.

And that goes for Session data created by other subsystems of GLS, such as the Session.ProNet structure
described in the previous section. Generally speaking, only GLS gets to alter Session data created by
GLS, only PRO-Net gets to modify Session.ProNet, only ELend gets to modify Session.ELend, etc.

Of course, “in general” means that there may be exceptions. But inasmuchas they would be deviations
from the standard, those exceptions must be approved by the Director of OISS.

SBA ColdFusion Programming Standards

Page 24 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

3.3 Security

3.3.1 Referrer Checks

CGI.HTTP_REFERER (misspelled per the HTTP standard with 3 R’s) can easily be spoofed and has no
meaning if the user goes to the page by e-mail hotlink, Favorites (Internet Explorer) or Bookmarks
(Netscape). So the earlier standard of checking CGI.HTTP_REFERER for “.sba.gov” is rescinded.

3.3.2 Logins (Usernames and Passwords)

• End users must not be permitted to bypass the login page and access any file in a protected
directory or protected resources.

• System-generated passwords must not contain 1’s or 0’s or lower case L’s or upper case O’s.
• User passwords must contain both letters and digits and include a minimum of 8 characters. (GLS

password formation is controlled by GLS, so rely on errors returned by its Java methods.)
• Passwords stored in database tables must be one-way-encrypted. Use the Hash() function to one-

way-encrypt passwords to a 32-character hexadecimal number. To validate a login with a one-
way-encrypted password, Hash() the password the user entered and compare it to the hashed
value on the database.

3.3.3 Data Validation for SQL

Numeric data entered by the user must be validated as numeric, or else parsed using Val(),
CFQUERYPARAM or CFPROCPARAM. In any text field that will be referenced in
PreserveSingleQuotes(), any quoted data entered by the user must have apostrophes doubled. These
measures prevent hackers from submitting commands into a SQL statement. In case it’s hard to read
below, the Replace() functions in this example are changing single apostrophes to double apostrophes:

<CFSET AndClause = "">
<CFIF Len(Form.bus_nm) GT 0>

<CFSET Temp = Replace(Form.bus_nm, "’", "’’", "ALL")>
<CFSET AndClause = "#AndClause# AND (bus_nm like '#Temp#%')">

</CFIF>
<CFIF Len(Form.bus_st) GT 0>

<CFSET Temp = Replace(Form.bus_st, "’", "’’", "ALL")>
<CFSET AndClause = "#AndClause# AND (bus_st like '#Temp#%')">

</CFIF>
<CFQUERY NAME="buscard_qry" DATASOURCE="#Variables.db#">
SELECT * from address
WHERE (bus_id = #Val(Form.bus_id)#)
#PreserveSingleQuotes(AndClause)#
</CFQUERY>

SBA ColdFusion Programming Standards

Page 25 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

3.3.4 Shared (or “Generic”) Logins

The datasource’s login is a shared login that represents the permissions of any user who has not yet
logged in. In any application that requires a login, such as those controlled by GLS, the datasource’s login
is a shared login that has no permissions, generally “cfnonfinforms”.

In any application visible outside the firewall, all other shared logins, particularly those with update
permissions, must come from behind the firewall. They specifically cannot come from a file on the Web
server, even if that file is encrypted. Current mechanisms for getting a shared login through the firewall
are via stored procedure (PRO-Net and related applications) or via Jaguar application server (GLS-
protected applications).

If shared logins are moved to database access Web Services behind the firewall (to keep them from ever
residing outside the firewall), access to those Web Services must be controlled, either by ColdFusion MX
roles or by providing the user login on every call.

3.3.5 Program Descriptions (Also Known As “Comment Headers”)

Programs must contain descriptive documentation of program functions and features. All updates and
modifications must be recorded in the description. They must contain the name of the programmer, office
or company, and version history. In addition, all accounting applications, such as ELend or Funds
Control, must also have a revision history (audit trail of all released versions), so that the authorship of
every line of code can be determined by the Unix utility “diff”.

<!---
AUTHOR: Nicolle Gurule
DATE: 02/16/2000
DESCRIPTION: This file displays search results.
NOTES: None.
INPUT: Form variables from dsp_search.cfm.
OUTPUT: Tabular display of search results.
REVISION HISTORY: 09/15/2003, DYL: Added address.
 04/30/2003, DYL: Fixed state code.
 02/16/2000, NG: Original implementation.
--->

3.3.6 <form … method="post">

You must use the POST method versus the GET method in forms that gather data, particularly where
passwords are involved, because using GET causes the password to appear in clear text on the screen in
the URL.

This would normally not be visible, since the action page would normally cflocation to a display page on
normal completion. But if an error occurred on the action page, the form element values become visible
on the URL.

SBA ColdFusion Programming Standards

Page 26 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

3.3.7 Cookies

The Government, in general, discourages the use of cookies. However, some applications may require
cookies associated with session management. Prior to ColdFusion MX, ColdFusion used cookies CFID
and CFToken. ColdFusion MX allows a new way (cookie JSessionID), but this feature must be enabled
on a server-wide basis by the server’s system administrator.

The following policies pertain to the use of cookies at the SBA:

• All cookies must be “session cookies”, also known as “temporary cookies”, or “memory
cookies”. Session cookies expire when the user quits their browser. This restriction implies that
you cannot use the EXPIRES attribute of CFCOOKIE. See section 3.2.9 Session Control (CF
4.x and 5.x) for an example of how set CFID and CFTOKEN.

• In ColdFusion applications, session cookies are preferable to maintaining a session with CFID
and CFToken on the URL, because allowing CFID and CFToken on the URL can result in an
accidental (or malicious) “session swap”.

• Cookies and the content they collect must be described fully in SBA’s Web Privacy Statement on
the home page. (CFID, CFToken and JSessionID don’t collect any data.)

• Cookies that collect sensitive data content must have the SECURE option enabled. (Again, CFID,
CFToken and JSessionID don’t collect any data.)

Federal mandates prohibit the use of “persistent cookies” - that is, cookies that are stored on the hard
drive of user’s PCs. The use of persistent cookies requires the personal approval of the Administrator of
the SBA.

Requests for a cookie waiver must provide the following detail:

• The name of the proposed cookie
• Full explanation of why the cookie is critical to the application
• Reasons why alternatives are not viable
• Detail on the cookie content
• Description of how the information is used
• The type of cookie (persistent or session)

3.3.8 File Upload Restrictions

CFFILE ACTION=”UPLOAD” must ACCEPT only text MIME types, and you must first compare
CGI.CONTENT_LENGTH to the maximum file upload size currently allowed by the security group.
Furthermore, no file uploaded by the public is allowed to remain on any Web server’s hard drive. You
must immediately read it (CFFILE ACTION=”READ”) and delete it (CFFILE ACTION=”DELETE”).
Failure to follow these rules can allow (1) uploading a virus or (2) a “Denial of Service” attack wherein a
user repeatedly uploads a huge file and eventually fills the Web server’s hard drive.

SBA ColdFusion Programming Standards

Page 27 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

3.4 Database

3.4.1 Structured Query Language (SQL) versus Stored Procedure Calls

Wherever a stored procedure exists to do so, all deletes, inserts, selects and updates must be via
CFSTOREDPROC calls, rather than your own SQL. (See 4.1.17 Stored Procedure Call Files.)

SQL may be used where no corresponding select stored procedure exists, as in the case of dynamically
generated SQL. Certain SQL select techniques cannot effectively be done in stored procedures, such as
the use of IN or NOT IN with a list of values. Similarly, where the user can choose from many possible
search criteria, stored procedures cannot effectively handle them all due to a mathematical problem
known as “combinatorial explosion”. In such circumstances, SQL is the only solution that works.

Also, where a stored procedure does not yet exist, but database permissions allow deletes, inserts, selects
and/or updates without going through a stored procedure, you may have to code SQL to test your code
before the stored procedure is written. This may have the added benefit of detecting special problems and
refining the requirements specification for the stored procedure itself. However, whenever this is done,
the application must be rewritten to use the stored procedure, once it becomes available.

Last but not least, there is a 255 character limit on parameters to a stored procedure in Sybase. (Microsoft
SQL Server does not have this limit, but Sybase does.) So if a Sybase column to be inserted, selected or
updated is of datatype “text” or a Binary Large Object (BLOB), it’s understood that it cannot be passed as
a parameter to a stored procedure and must be inserted, selected or updated via SQL.

3.4.2 Use CFTRANSACTION, not CFLOCK, to Lock Database Changes

Limit concurrent updates to the database using CFTRANSACTION, not CFLOCK. CFTRANSACTION
will affect all accesses to the data being updated, not just those occurring in your ColdFusion code.
Example code:

<cftransaction action="BEGIN" isolation="Serializable">
<!--- database update with spc file --->
<!--- database update with spc file --->
<!--- database update with spc file --->
<cfif Variables.TxnErr>

<cftransaction action="ROLLBACK" />
<cfelse>

<cftransaction action="COMMIT" />
</cfif>

</cftransaction>

Note that the tags with ROLLBACK and COMMIT contain a slash just before end-of-tag. This is a
convention from XML that means “this tag, which normally has a closing tag, doesn’t have a closing tag
in this case”. ColdFusion uses this convention to nest ROLLBACK and COMMIT actions inside a
<cftransaction> … </cftransaction> block.

SBA ColdFusion Programming Standards

Page 28 of 127 Version: 3.2.3
3. Coding Standards, Application-Specific Code Modified: 11/06/2008

3.5 Miscellaneous

3.5.1 Browser Support (HTML, CSS and JavaScript)

In “Intranet” applications (those that will be seen only by SBA employees and others behind the SBA
firewall, it is acceptable to support only the current version of Microsoft Internet Explorer (“MSIE”) for
Windows.

But in “Internet” applications (those that will be seen by the public), you must support up to 2 levels back
of the following browsers:

1. MSIE for Windows (2 levels back = 7.0, 6.0 and 5.5)
2. Netscape for Windows (2 levels back = 8.1, 7.2 and 7.1)
3. Firefox for Windows (2 levels back = 2.0, 1.5.0.8 and 1.5)
4. Firefox for Macintosh (2 levels back = 2.0, 1.5.0.8 and 1.5)
5. Safari for Macintosh (2 levels back = 2.0.4, 2.0 and 1.3)

Note that MSIE for Macintosh is no longer on this list. Its versions were capped more than 3 years ago,
and is no longer on the Microsoft site for download. Also, Firefox has been added to the list. And there
have been recent new releases of all of these browsers which are now on this list.

Also, although not required, it is advisable to be compatible with strictly-standards-compliant browsers,
so that your code will continue to run correctly as all browsers become more standards-compliant:

6. Opera for Windows (current version)

NOTE: Although you’re not required to support anything more than the current MSIE for Windows in
intranet applications, it is generally recommended to code for cross-browser compatibility anyway, as
this allows the SBA to change its standard browser without major code conversions, and prepares you for
coding for the wider Internet user community.

Since HTML, CSS and JavaScript versions vary according to browser versions, supporting the browser
implies writing HTML, CSS and JavaScript that behave correctly in those browser versions. See section
5.3.10, below, for specific help and guidance on writing cross-browser compatible code.

3.5.2 Section 508 Support

Section 508 support is the subject of other SBA standards documents, so those standards will not be
discussed here. It’s sufficient to say that your ColdFusion application must obey those standards as well.

SBA ColdFusion Programming Standards

Page 29 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4 Coding Standards, Shared Code

Where Shared Code exists to do what you need to do, you must use it. On all SBA ColdFusion Servers,
shared code always resides in the following directories mostly at the Web server’s document root level:

/cfincludes/datasourcename Stored Procedure Call files (see 4.2)
/library/callbacks Callbacks to server in AppHidden frame (see 4.1.16.4)
/library/cfincludes CFML code invoked by <cfinclude>
/library/classes Client-side Java (applets), contains /source and /examples
/library/css Cascading Style Sheets
/library/customtags CFML custom tags (example, SBA look-and-feel)
/library/html Sharable HTML (blank.html, etc)
/library/images Images (gif, jpeg, jpg, png, etc)
/library/javascripts client-side data validation, form control, etc
/library/pdf Sharable PDF files
/library/swf Sharable Flash files
/library/udf User Defined Functions
/library/video Movies (typically very large, mov, wmv, etc)
/library/xml Sharable XML, notably XSD components
/opt/coldfusion[mx[7]]/Java/classes Java custom tags (file system address, not under doc root)

To add new features to existing Shared Code, there’s also a “prelibrary” directory with the same
subdirectories. Developing new library features out of prelibrary avoids the problems of impacting other
developers, who are generally using library, not prelibrary, as their top level directory for Shared Code. If
you wish to create some new code to be shared across all applications, you will have to ask to be added to
the prelibrary Unix group, which allows you to edit files in prelibrary and its subdirectories.

Generally speaking, you should adhere to a similar pattern in your application when you have application-
specific code that you want to share within your app:

/myapp/cfincludes/datasourcename Application-specific (edited) SPCs
/myapp/cfincludes Files included from multiple subdirectories of myapp
/myapp/customtags (must be invoked by cfmodule)
/myapp/java Server-side Java (servlets and CFXs)
/myapp/javascripts Scripts not related to SBA Look-and-Feel
/myapp/javascripts/sbalookandfeel Scripts invoked by “MainNav” buttons
/myapp/udf (etc)
/myapp/xml (etc)

Adhering to this convention allows developers on one application to be assigned to another application
and know where to find things. For now, this naming convention is recommended and not mandatory.
However, application-specific Shared Code directories must adhere to this naming convention.

Only application-specific Shared Code may be used in application specific Shared Code directories. You
may NOT copy system-wide Shared Code from /library into your own app’s directories and use them
from there. Examples of truly application-specific code might be JavaScripts that reference specific form
element names (EditBS in ELend) or codes unique to the application’s database (PronetMincFormat). If
code could be shared across multiple applications, it belongs in /library, and you must use the /library
version of it, not your own local copy.

SBA ColdFusion Programming Standards

Page 30 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1 SBA Look-and-Feel

To present a consistent look-and-feel across all applications, OCIO/OISS has developed 2 ColdFusion
custom tags, called cf_sbalookandfeel and cf_mainnav. If your application has no need of frames, you
probably won’t ever call cf_mainnav.

Perhaps the hardest part of learning how to use the SBA look-and-feel custom tags is the wide range of
features, which quickly induces “information overload”. This portion of the SBA ColdFusion Standards
document is meant to introduce you to the features gradually, in a top-down approach, so that you’ll be
better able to decide which features to use and which to ignore.

4.1.1 Screen Snapshot of SBA Look-and-Feel, Showing Page Regions

Opera is being used in this snapshot to show that SBA look-and-feel is cross-browser compatible.
Regardless of browser, the page looks pretty much like this. SBA look-and-feel has been tested with
Microsoft Internet Explorer for PC and Mac, Netscape for PC and Mac, Firefox for PC and Mac, Opera
for PC and Safari for Mac. The reason why we’re able to support such a wide range of browsers is that
cf_sbalookandfeel adheres to the Cascading Stylesheets – Positioning (CSS-P) standard.

As you can see from the included text, the page is divided up into “regions”. Not all of the regions are
required. Four of them can be inline (markup residing in the current file) or frames (markup residing in
separate files, usually for code sharing). The choice is up to you. The appearance will be the same.

Note: All regions have 0 pixels of padding. This was necessary for consistent cross-browser positioning.
A side benefit is that it gives you edge-to-edge control over what appears in each region. If you don’t
want 0 pixels (if you would prefer, say, 2 pixels of padding), you can simply wrap everything in <div
class=”pad2”> ((region’s markup)) </div>, or use a <table> with cellpadding and/or cellspacing. It’s
much easier to add the padding you want than it is to get rid of padding you don’t want.

SBA ColdFusion Programming Standards

Page 31 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.2 Regions of the Page and What They’re Called

The regions of the page (listing them top-down and then left to right) are as follows:

• WindowTitle is at the very top of the window. In tabbed browsers, it also appears in the tab.
• The SBA Look-and-Feel Menu control is a tiny medium blue square in the upper left corner.
• The 10-Pixel White Margin is the outer white region which, when clicked, maximizes the

AppData region or reverts it back to original size. If you produce end user documentation for
your system, be sure to tell your end users about this maximize/minimize feature. It’s not terribly
obvious or well-known, but it greatly enhances ease-of-use.

• SBALogo is a hotlink to the SBA Home Page (http://www.sba.gov).
• MainNav is situated to the right of SBALogo. It can be a frame imaged by a separate ColdFusion

page. It contains an optional “Ready Light” and the main navigation buttons, as follows:
o The top row of buttons are standard, and appear in a standard order, regardless of the order

you specify them. These buttons come from /library/images/sbalookandfeel.
o The bottom row of buttons are application-specific, appear in the order you specify and come

from /library/images/applookandfeel. (This gives you a convenient place to look for buttons
that already say what you need one to say.)

o Both rows invoke JavaScripts that are unique to your application. Therefore, although the
Admin button’s appearance and placement are standard, pressing it performs a different
action in each application.

• AppName is under SBALogo. The name of your application is put there. One line only, please. If
you need to display more, consider using a portion of AppInfo or a title at the top of AppNav.

• AppInfo is to the right of AppName. It can be inline HTML or a frame imaged by a separate
ColdFusion page. It’s used to identify “what you’re looking at” (what loan, what company, etc).

• AppNav is under AppName. It can be inline HTML or a frame imaged by a separate ColdFusion
page. It’s where you put situational navigational elements, such as hotlinks or a navigation tree.
For example, if the user presses the Reports button in MainNav, it might take the user to a
/reports subdirectory of your app, and in that subdirectory, AppNav might contain a list of reports
that the user has permissions to display. .

• AppData is to the right of AppNav. It can be inline HTML or a frame imaged by a separate
ColdFusion page. It usually contains data entry forms, search results, welcome screens, etc. It’s
the largest and most important region of the screen, where users conduct most of their work.

• BotMost is the region where the standard, end-of-page hotlinks appear.
• AppHidden is invisible. It’s always a frame containing a separate page. If you don’t specify

which page in the SBA look-and-feel call, it will initially be /library/html/blank.html. It’s used for
“server callbacks” (see 4.1.16.4).

4.1.3 Which Regions are Optional

If AppInfo isn’t given, MainNav expands downward to fill the space normally filled by AppInfo. This
feature could someday be used to make room for more MainNav buttons, but so far that hasn’t been
necessary.

If AppNav isn’t given, AppData expands leftward to fill the space normally filled by AppNav. Typically,
you would do this to display a big search form or wide tabular data, such as the results of that search.
Although it could be done, you would NOT do this to display data for printing, such as all data associated
with a loan application, or a report. For printable reports, you would typically leave SBA look-and-feel
entirely and display the report against a plain white background, because SBA look-and-feel elements
would be inappropriate in the context of a printed report.

http://www.sba.gov/�

SBA ColdFusion Programming Standards

Page 32 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.4 How to Call the SBA Look-and-Feel Custom Tag

You would generally never use <cfmodule> unless you were developing a new version of the custom tag
itself. Generally speaking, you should use <cf_customtagname> syntax instead, as follows:

<cf_sbalookandfeel
 attribute=value
 attribute=value
 ...>
 ((possible AppData HTML here, appended to AppDataInline))
</cf_sbalookandfeel>

Attributes (defaults of multiple-choice features shown in bold):

AppDataInline – HTML of AppData (see below)
AppDataURL – URL of AppData if you want it to be a frame
AppHiddenURL – URL of AppHidden frame (not usually used)
AppInfoInline – HTML of AppInfo if AppInfoURL not given
AppInfoURL - URL of AppInfo if you want it to be a frame
AppName - Name to appear in AppName region of page
AppNameHeight – Height, in pixels, of AppName and AppInfo regions
AppNavInline - HTML of AppNav if AppNavURL not given
AppNavURL - URL of AppNav if you want it to be a frame
AutoResize - "Yes" or "No" – whether to turn on feature
Configs - Used in development of new versions of custom tag *
Debug - Used in development of new versions of custom tag *
JSInline - HTML of JavaScripts, usable by all inline regions
LibURL - Used in development of new versions of custom tag *
MainNavHiddens- Used to pass CF data to MainNav JavaScripts *
MainNavJSURL - Directory of MainNav JavaScripts *
MainNavURL - URL of MainNav if you want it to be a frame
ReadyLight - "Yes" or "No" – whether to turn on feature *
Show - List of buttons to appear in MainNav *
WindowTitle - Name to appear in title bar of window
TextOnly - Old, "Yes" or "No", nowadays use AutoResize *

* = passed to <cf_mainnav> if you don’t give MainNavURL

There are 2 ways to give inline HTML for the AppData region. One way is to put it between
<cf_sbalookandfeel> and </cf_sbalookandfeel>. The other way is to pass it as the AppDataInline
attribute. Either way is fine, and you can do both. If you do both, the contents of AppDataInline will be
put into AppData first, followed by whatever’s between <cf_sbalookandfeel> and </cf_sbalookandfeel>.

The handling of frames versus inline HTML is not nearly so flexible, because the custom tag won’t know
which to do. For example, if you give both AppInfoInline and AppInfoURL, <cf_sbalookandfeel> will
abort the call, saying that you must use one or the other, but not both.

SBA ColdFusion Programming Standards

Page 33 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.5 Controlling the MainNav Buttons with the Show Attribute

In order to make SBA look-and-feel extensible without reprogramming every time a new button is
introduced, the Show list of buttons is the list of ALT attributes for the button images. From this list of
ALT attributes, it generates the button graphic image file names, JavaScript names, JavaScript file names,
etc. Because of restrictions of file names and JavaScript expressions, their names must have spaces and
hyphens stripped out first. It’s easier to show everything that happens by providing an example such as
the following: Suppose the ALT attribute of your button is “Go To E-Gov”:

 ALT attribute: Go To E-Gov
 JavaScript function name: DoGoToEGov (spaces and hyphens removed)
 JavaScript file name: DoGoToEGov.js (js suffix added)
 JavaScript name of graphic: document.gotoegov (lower case to match JPEGs)
 “Lowlighted” (mouse not over) graphic: /libray/images/applookandfeel/gotoegov_lo.jpg
 “Highlighted” (mouse over) graphic: /libray/images/applookandfeel/gotoegov_hi.jpg

It’s not SBA look-and-feel’s responsibility to make sure that the JavaScript file or /applookandfeel images
exist. Its responsibility is simply to generate HTML based on your inputs. It’s your responsibility to make
sure that the files exist. But you don’t have to do it all yourself. OISS has specialists in graphics and
JavaScript to create them for you. All you have to do is request the creation of a new button. Whoever
creates the button graphics for you will also put them into the /applookandfeel directory for you.

You can also shortcut the process by searching /library/images/applookandfeel for an already existing
button that may be close enough to what you want it to say. Hence, if there were already files there called
“egov_lo.gif” and “egov_hi.gif”, and you felt that these file names were descriptive enough, you could go
ahead and use them, even though they were not specifically created for your application. All you would
need to do in that case is create (or request creation of) a DoEGov.js file that defines a JavaScript function
called DoEGov.

Assume this file didn’t exist, and your button has ALT text “Go To E-Gov”. Suppose further that you
have already built “Yes”/”No” variables with User in the name, indicating the privileges of the current
user. You would normally build the Show attribute according to those privileges, as in the following
example (“Variables.” omitted to keep the lines from wrapping in this example):

<cfset Show = "Exit,Help"><!--- All users --->
<cfif AdminUser>
 <cfset Show = ListAppend(Show, "Admin")>
</cfif>
<cfif PublicUser>
 <cfset Show = ListAppend(Show, "Go To E-Gov")>
</cfif>
<cfset Show = ListAppend(Show, "Reports")><!--- All users --->
...
<cf_sbalookandfeel
 ...
 Show = "#Show#">

The actual contents of the Show attribute might be “Exit,Help,Go To E-Gov,Reports”. Although it
appears to be wrong to have spaces in the list, the contents of the ALT attributes of the graphics is what’s
expected. (If the user is in TextOnly mode, it will instead be the text hotlink. Since the user had to
request TextOnly mode, that’s just what the user wanted, only the text that says what the hotlink does.)

SBA ColdFusion Programming Standards

Page 34 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.6 How to Specify Inline HTML versus Frames

To specify inline HTML:

• MainNav – Don’t give the MainNavURL attribute to cf_sbalookandfeel. cf_sbalookandfeel will
call cf_mainnav for you, causing MainNav to be HTML in a cell of a <table> on the same page.

• AppInfo – Build the HTML into a variable (by convention and force-of-habit, it’s typically
called Variables.AppInfo). Don’t give the AppInfoURL attribute to cf_sbalookandfeel, but
instead give AppInfoInline and pass the contents of that variable (for example,
AppInfoInline=”#Variables.AppInfo#”).

• AppNav – Build the HTML into a variable (by convention and force-of-habit, it’s typically called
Variables.AppNav). Don’t give the AppNavURL attribute to cf_sbalookandfeel, but instead give
AppNavInline and pass the contents of that variable (for example,
AppNavInline=”#Variables.AppNav#”).

• AppData – Don’t give the AppDataURL attribute to cf_sbalookandfeel, but instead give the
HTML between <cf_sbalookandfeel> and </cf_sbalookandfeel>, or in AppDataInline.

Recommendation for inline HTML: A very convenient way to build inline HTML in a variable is using
<cfsavecontent>. It’s very much like outputting HTML to a Web page, and much easier than using string
concatenation. For example, if you need to have JavaScripts available to any of the above regions (usually
AppData), you would use the JSInline attribute. The following is an example of how to build it:

<cfsavecontent variable="Variables.JSInline"><cfoutput>
<script src="/library/javascripts/EditMask.js"></script>
<script src="/library/javascripts/EditDate.js"></script>
<script>
<!—
function DoThisOnSubmit(pForm)
{
...
}
// -->
</script>
</cfoutput></cfsavecontent>
<cf_sbalookandfeel JSInline="#Variables.JSInline#" ... >

To specify frames: To have a region imaged by a separate ColdFusion page in a frame, pass the following
attributes to cf_sbalookandfeel with the URL of the separate ColdFusion:

• MainNavURL – Example MainNavURL=”dsp_mainnav.cfm”. (In the page pointed to by
MainNavURL, you would call <cf_mainnav>.)

• AppInfoURL – Overrides AppInfoInline. Example AppInfoURL=”dsp_appinfo.cfm”.
• AppNavURL – Overrides AppNavInline. Example AppNavURL=”dsp_navtree.cfm”.
• AppDataURL – Overrides HTML between <cf_sbalookandfeel> and </cf_sbalookandfeel>. (If

there’s also HTML between <cf_sbalookandfeel> and </cf_sbalookandfeel>, it will mess up the
display of the page. So don’t give both AppDataURL and HTML between <cf_sbalookandfeel>
and </cf_sbalookandfeel>.) Example AppDataURL=”dsp_enterapp.cfm”.

• AppHiddenURL – If given, preloads the invisible frame in which you can do server callbacks. If
not given, “/library/html/blank.html” will be used. (Note that, no matter what, the AppHidden
frame will always exist, so that it can be used later by library routines when/if needed).

SBA ColdFusion Programming Standards

Page 35 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.7 When to Use Inline HTML and When to Use Frames

As mentioned above, MainNav, AppInfo, AppNav and AppData can be either inline HTML or frames
imaged by separate ColdFusion pages. (That’s why we refer to them generically as “regions”.)

The decision of whether to use inline HTML or frames to image a region is normally based on page load
times and trying to get the pages to load as fast as possible. If a region is shared across many pages and
doesn’t change much, using a frame would be the suggested alternative, so that other segments of the
page that do not change much can change without having to reload the frame. If, however, virtually all
regions of the page change, inline HTML would be the recommended alternative.

Scrolling convenience is no longer a major consideration. With the original version of cf_sbalookandfeel,
if both AppNav and AppData were potentially long (and hence, liable to result in scrolling), you might
have been forced make them both frames so that they could scroll independently of one another. But with
the new CSS-P version of cf_sbalookandfeel, inline regions can scroll independently too, just like frames.
It also has the added advantage of guaranteeing that the BotMost hotlinks will remain on the screen.

Frames offer the greatest potential to significantly optimize page load times, but at the cost of making the
application more complex. You might very likely have to code JavaScript commands for one frame to tell
another frame to reload itself. If the other frame is a server callback in AppHidden, it will likely pass data
back to the current frame using JavaScript when it’s done. And you have to learn how to target other
frames in hotlinks, so HTML also gets a little more complex.

4.1.8 What Happens When MainNav Is NOT a Frame

When the MainNavURL attribute is not specified, cf_sbalookandfeel calls cf_mainnav for you and passes
all attributes that are allowed by both tags. Currently, that list is ActionURL, Configs, Debug, LibURL,
MainNavHiddens, MainNavJSURL, ReadyLight, Show and TextOnly.

In addition, it passes 2 attributes of cf_mainnav which are NOT attributes of cf_sbalookandfeel: InFrame
(always “No” in this situation) and Width. Simply put, because cf_mainnav’s output will be inline
HTML, cf_mainnav needs to to be told that it’s not in a frame and must constrain the width of the HTML.

Therefore, even if you’re not coding a separate page to display a MainNav frame, you still need to know
the cf_mainnav attribute names and what they do, because you have to give them in the call to
cf_sbalookandfeel. (The most important ones are ReadyLight and Show, by the way.)

4.1.9 What Happens When MainNav IS a Frame

When the MainNavURL attribute is specified, it contains the URL of another page that will fill the
MainNav frame and will call cf_mainnav. It’s very important that certain attributes of both custom tags be
the same.

In particular, if you say <cf_sbalookandfeel ReadyLight=”Yes” MainNavURL=”dsp_mainnav.cfm”>,
and dsp_mainnav.cfm says <cf_mainnav ReadyLight=”No”>, a JavaScript error will result. The reason is,
the frames document will generate JavaScript to control the ReadyLight, but the MainNav frame won’t
define it. When the JavaScript executes, it generates an error when attempting to reference an undefined
object.

SBA ColdFusion Programming Standards

Page 36 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.10 HOW to Use Inline HTML and HOW to Use Frames

Simply put:

• When a region is INLINE, you must NEVER provide <DOCTYPE>, <html>, <head>, </head>,
<body>, <cf_lastmodified>, </body> or </html>.

• When a region is in a FRAME, you must ALWAYS provide <DOCTYPE>, <html>, <head>,
</head>, <body>, </body> and </html>. In addition, if the region is AppData, you must also call
<cf_lastmodified> just before </body>.

4.1.10.1 Special Problem – Executing JavaScript onLoad with an Inline Region

When a region is in a frame, you can just code <body onLoad=" … "> and do anything you want when
the frame is fully loaded. But what if the region is inline? The answer is to put all of your onLoad code
into a function called DoSomethingDifferentOnLoad (with exactly that spelling and capitalization), and
include it in the JSInline attribute of the <cf_sbalookandfeel> call. In addition, your
DoSomethingDifferentOnLoad function must do everything that’s done in the “else” condition of the
<cf_sbalookandfeel>-generated body tag’s onLoad. Here’s why:

When <cf_sbalookandfeel> generates the body tag, the onLoad JavaScript checks for the existence of
DoSomethingDifferentOnLoad. If it sees a function by that exact name, it calls the function INSTEAD
OF its usual initializations, not in addition to them. Therefore, it’s the responsibility of your
DoSomethingDifferentOnLoad function to do the exact same initializations that would have been done by
the generated body tag, which is the code in the “else” condition.

Another way to do it would have been for the generated body tag’s onLoad to do the initializations, then
call DoSomethingDifferentOnLoad if it’s defined. That would have been less work for those who want to
use the DoSomethingDifferentOnLoad mechanism. But, in the process, it would have also denied you the
ability to execute your own code AHEAD OF the initialization code, in case you needed to do that for
some reason. (It’s highly recommended that you perform the SBA-look-and-feel initializations FIRST, so
that they will be done even if there are errors in your own JavaScript.)

Example 1 (AppData OnLoad when AppData and MainNav Are Both Inline):

Because MainNav is inline, <cf_sbalookandfeel> generates the body tag as follows:

<body onload="
if (top.DoSomethingDifferentOnLoad)
 top.DoSomethingDifferentOnLoad();
else
 {
 MainNavDoThisOnLoad();
 SlafDoThisOnLoad();
 }
"
onresize="SlafDoThisOnResize();">

Because MainNav is inline, <cf_sbalookandfeel> must initialize it by calling MainNavDoThisOnLoad.
Because you’re OVERRIDING <cf_sbalookandfeel>’s initializations, you must call it too.

SBA ColdFusion Programming Standards

Page 37 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

Therefore, if you want to put the focus into your form called FormRight, form element BusCntctFirstNm,
you would do the following:

<cfsavecontent variable="Variables.JSInline">
 <cfoutput>
<script>
function DoSomethingDifferentOnLoad ()
{
MainNavDoThisOnLoad();
SlafDoThisOnLoad();
document.FormRight.BusCntctFirstNm.focus();
}
</script>
</cfoutput>

Then later:

<cf_sbalookandfeel
 ...
 JSInline = "#Variables.JSInline#"
 ...>

Example 2 (AppData OnLoad when AppData Is Inline But MainNav Is In a Frame):

Because MainNav is in a frame, <cf_sbalookandfeel> genertates the body tag differently, as follows:

<body onload="
If (top.DoSomethingDifferentOnLoad)
 top.DoSomethingDifferentOnLoad();
else
 SlafDoThisOnLoad();
"
onresize="SlafDoThisOnResize();">

Note that the else clause doesn’t bother to call MainNavDoThisOnLoad, because that’s the responsibility
of the MainNav frame. So you shouldn’t call MainNavDoThisOnLoad either. In fact, you must NOT call
MainNavDoThisOnLoad in your DoSomethingDifferentOnLoad function, because it won’t be defined:

<cfsavecontent variable="Variables.JSInline">
 <cfoutput>
<script>
function DoSomethingDifferentOnLoad ()
{
SlafDoThisOnLoad();
document.FormRight.BusCntctFirstNm.focus();
}
</script>
</cfoutput>

The call to <cf_sbalookandfeel> is the same as in Example 1.

SBA ColdFusion Programming Standards

Page 38 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

Example 3 (Appending to JSInline):

Suppose you have a standard header file that you cfinclude at the start of all your pages. So
Variables.JSInline is already defined with stuff you need. In a situation like that, how would you append
your DoSomethingDifferentOnLoad function into the Variables.JSInline that was defined in the header
file? It’s actually quite simple:

<cfsavecontent variable="Variables.JSInline">
 <cfoutput>#Variables.JSInline# <!--- Defined in dsp_header --->
<script>
function DoSomethingDifferentOnLoad ()
{
((whatever))
}
</script>
</cfoutput>

This is exactly analogous to appending something with <cfset>, except that you’re doing it within a
<cfsavecontent>. This <cfsavecontent> technique has been tested, and it works just fine.

(Note the courtesy to other developers in commenting where the existing JSInline data comes from.)

Example 4 (JSInline Already Contains a DoSomethingDifferentOnLoad Function):

If you have a special case file that needs to do something different from your header file’s
DoSomethingDifferentOnLoad, it’s best to modify the header file’s DoSomethingDifferentOnLoad. The
crude way to do it (not recommended) is to check the current page name:

In dsp_header.cfm:

function DoSomethingDifferentOnLoad()
{
((whatever would have been done by cf_lookandfeel's body "else"))
((whatever is normally done for all pages that use dsp_header.cfm))
...
var sPathArray = document.location.pathname.split("/");
var sFileName = sPathArray[sPathArray.length – 1];
if (sFileName == "dsp_contacts.cfm")
 document.FormRight.BusCntctFirstNm.focus();
}

The split() method is defined for all JavaScript strings since JavaScript 1.1, over 10 years ago. Its
ColdFusion equivalent is ListToArray, so this is essentially like ListToArray(CGI.Script_Name). The
main difference is that JavaScript arrays are 0-based, so you have to subtract 1 to get the last element.

This technique will work, but it’s NOT RECOMMENDED, because it isn’t extensible. In other words, if
you wanted to put the focus on different form elements on different pages, you would have to keep
modifying and modifying and modifying dsp_header’s DoSomethingDifferentOnLoad function to test for
all the different page names. It would also hinder sharing that header file in a different directory, because
the DoSomethingDifferentOnLoad function would be essentially tied to the directory it was created for.

SBA ColdFusion Programming Standards

Page 39 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

The more elegant and extensible way to do it is to check for the presence of a special function specific to
your application:

In dsp_header.cfm:

function DoSomethingDifferentOnLoad()
{
((whatever would have been done by cf_lookandfeel's body "else"))
((whatever is normally done for all pages that use dsp_header.cfm))
if (top.DoSomethingExtraOnLoad)
 top.DoSomethingExtraOnLoad();
}

In dsp_contacts.cfm:

<cfsavecontent variable="Variables.JSInline">
 <cfoutput>#Variables.JSInline# <!--- Defined in dsp_header --->
<script>
function DoSomethingExtraOnLoad ()
{
document.FormRight.BusCntctFirstNm.focus();
}
</script>
</cfoutput>

Do you see the improvement? It’s extensible to other pages. Now any page that wants to do extend
dsp_header’s DoSomethingDifferentOnLoad function simply has to define its own
“DoSomethingExtraOnLoad” function. And dsp_header.cfm’s DoSomethingDifferentOnLoad function
doesn’t have to be reprogrammed to recognize several file names.

Note that this new function name has no meaning to SBA look-and-feel. It is known only to your own
application’s DoSomethingDifferentOnLoad function.

4.1.10.2 Special Problem – Referencing a Frame

If you’re used to referencing the Document Object Model of a page without frames, it’s a little extra work
to reference the same sorts of things when frames are involved, but not too much extra. Frames are
window objects in JavaScript. Therefore, you can reference all of the properties of the window object,
such as document, location, etc, and all of a window’s methods, such as reload(), writeln(), etc, using a
frame reference.

The topmost window/frame reference is “top”, so the SBA look-and-feel regions (IF THEY ARE
FRAMES) can be referenced as top.AppData, top.AppHidden, top.AppInfo, top.AppNav and/or
top.MainNav. Of these, only AppHidden is always a frame.

Other than the need to reference the frame to get to an object in a different frame, you can do pretty much
everything you could do if the object were in the same frame. The major exception is populating options
into a dropdown menu. Microsoft Internet Explorer 5.0 and higher will not let you do that. Instead, you
have to define a function in the same frame as the dropdown, then call that function from other frames.
(An example of how to do this is in the non-AJAX version of LookupZipToDropdown.)

SBA ColdFusion Programming Standards

Page 40 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.11 What CSS Class Names to Use

The call to cf_sbalookandfeel will link in the cascading stylesheet file /library/css/sba.css, which defines
the standard classes and associated colors for SBA look-and-feel. It will also specify the CSS class names
to be used in each of the regions of the page. But when those regions are frames (imaged by other pages),
you’ll need to link in /library/css/sba.css yourself on those pages, and use the following class names:

MainNav background – class="headernav"
AppInfo background – class="inthead"
AppInfo labels – class="infolabel"
AppInfo data – class="infodata"
AppNav background – class="leftnav" (or leftnavCopy)
AppNav subheader of AppName – class="leftnavtitle"
AppNav hotlinks – class="menuitem"
AppNav color of highlighted link – class="menuitem_hi" (colors text like highlighted hotlink)
AppData – class="normal" or no attributes (<body>)

Normally, you’ll get these classes and colors automatically in inline regions of the page. Occasionally,
while defining a <table> for example, you may accidentally override the normal SBA look-and-feel
defaults. If that happens, you can restore them by using the class names or colors above.

Also, the defaults provided by cf_sbalookandfeel are just the backgrounds. Hotlinks, headers, data, etc,
are standardized class names, but they aren’t applied automatically. Rather, they must be applied
manually to the specific items you want to colorize. Examples:

AppInfo:

<td class="infolabel">Loc ID:</td><td class="infodata">#Variables.LocId#</td>

AppNav (suppose “Monthly Report” is currently being displayed in AppData):

Weekly Report

Monthly Report

Quarterly Report

Annual Report

Because Monthly Report is currently being displayed in AppData, you have generated AppNav such that
the Monthly Report is not a hotlink, but instead is the same color that hotlinks get when the mouse hovers
over them. Presumably, if the user clicks the Quarterly Report hotlink, you would engineer the frames
interaction such that AppNav would get regenerated with Quarterly Report in the , and Monthly
Report in a hotlink. This technique shows the user which report is currently selected, with consistent
look-and-feel.

Previously, this document gave an example of hardcoding the hightlighted color:

Monthly Report
<!-- Don't do this! -->

Currently, the color of a highlighted hotlink with class="menuitem" is yellow (#ffffcc), so that would
work. But it would misbehave if we changed the color scheme of menuitem in the future. So use
class="menuitem_hi" instead. (Note the similarity to MainNav’s highlighted button file names.)

SBA ColdFusion Programming Standards

Page 41 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.12 The Screen Resizing Feature

Every page is initially displayed at the default size for MSIE for Windows at 1024x768 resolution. If
JavaScript is turned on in the user’s browser, SBA look-and-feel will then automatically resize the page to
the height and width of the current window. In addition, if the user resizes the window, SBA look-and-
feel will continue to automatically resize the page accordingly. But if JavaScript is not turned on, and the
page will remain the default size.

4.1.13 The TextOnly Feature

SBA look-and-feel supports a TextOnly attribute which affects the SBALogo, the buttons in MainNav
and the graphic backgrounds in MainNav and AppInfo. When the user requests the TextOnly version of
your pages, you can simply say <cf_sbalookandfeel TextOnly="Yes"> (the old, one-page-at-a-time way
to do it), and all of those graphics are converted to text hotlinks and other HTML equivalents.

TextOnly mode affects only the graphics that SBA look-and-feel generates. It doesn’t affect the graphics
in the HTML that you yourself display. It also doesn’t affect the tiny folder and document icons of the
DHTML tree generated by <cf_sbatree> and <cf_sbatreeitem>, although someday the automatic
TextOnly feature might be able to tell those custom tags to use text equivalents as well. For your own,
application-specific graphics, see 5.3.6.6 for an example of how to create an HTML equivalent.

As mentioned above, coding TextOnly="Yes" is the old, one-page-at-a-time way to set TextOnly mode.
A new way exists to automatically convert your entire application. So before coding the TextOnly
attribute, read 4.1.14 Automatic Screen Resizing and TextOnly. It could save you a lot of coding.

SBA ColdFusion Programming Standards

Page 42 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.14 The Automatic TextOnly Feature

To allow automatic support for TextOnly, include the following after <cfapplication> in your
Application.cfm file:

<!--- IncDir is an example name. See section 5.2.1, below. --->
<cfset IncDir = "/library/cfincludes">
<cfapplication
 name = "GLS"
 SessionManagement = "Yes"
 SessionTimeout = #CreateTimeSpan(0,1,0,0)#
 SetClientCookies = "No">
<cfinclude template="#IncDir#/get_sbalookandfeel_variables.cfm">

Automatic TextOnly used to be tied to screen resizing, which explains why the attribute is still called
AutoResize. Including get_sbalookandfeel_variables allows you to use the <cf_sbalookandfeel
AutoResize="Yes" … > attribute. If you attempt to use this attribute without using the cfinclude, your
page will crash because a variable won’t be defined.

AutoResize defines a hidden form and a JavaScript function. To make it easy to remember, the JavaScript
function is called top.AutoResize. It takes one parameter, “pToggleTextOnly”. If it’s true, SBA look-and-
feel will switch automatic TextOnly from “Yes” to “No”, or “No” to “Yes”. If it’s false, that switch won’t
be made.

The newest versions of SBA look-and-feel use cascading style sheet positioning (CSS-P) and JavaScript
to adapt to new users’ browsers, so the previous technique of using AutoSubmit="Yes" on “welcome”
pages is no longer necessary. (It requires 2 hits on the server and messes up the user’s Back button.)
But a welcome page is still a good place to allow the user to toggle between Text Only and Graphics, like
so:

 <cfif Request.SlafTextOnly>Graphics</cfelse>Text Only</cfif>

YOU DO NOT NEED TO ADD AUTORESIZE="YES" TO EVERY SBALOOKANDFEEL CALL IN
YOUR APPLICATION. Once the automatic feature has been set or by a call to top.AutoResize, all pages
controlled by the same Application.cfm will automatically adopt that TextOnly mode default. One
welcome page is usually enough to convert an entire application!

SBA ColdFusion Programming Standards

Page 43 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.15 Form Data Recovery

Part of SBA look-and-feel is to recover form data when a user returns to the last form page they were on.
Examples of this concept are as follows:

• If a user enters search criteria and does a search, but then returns to the search criteria page to refine

the search, all of the previous contents of that search criteria form should still be there, so that the user
can tweak the criteria slightly without having to reenter all the previous criteria manually.

• If server-side data validation in an action page determines that the data entered cannot be saved to the
database (alphabetic data in a numeric field, for example), the action page must return to the
associated display page with error message(s) and all of the data entered by the user must be restored
to the form as well.

To this purpose, SBA look-and-feel implements standard routines for saving and restoring form data in
the Session scope. These routines are generically referred to as the “Form Data Recovery” facility. There
is only one place to store form data, so it can be done only for the most recent form page the user was on.
If the user goes to another page that uses Form Data Recovery, that page becomes the most recent and the
previous form page’s data is lost. We don’t keep a history of all forms the user visited, just the last one.

There are 2 kinds of Form Data Recovery: manual and automatic. In manual Form Data Recovery, you
call the “get” and “put” routines directly yourself, when you want them done and only at that time. In
automatic Form Data Recovery, SBA look-and-feel calls the “get” and “put” routines for you.

Manual Form Data Recovery:

To save the Form scope to the Session scope, do the following:

<cfinclude template="put_sbalookandfeel_saveformdata.cfm">
To recover the saved form part of the Session scope to the Variables scope, do the following:

<cfinclude template="get_sbalookandfeel_saveformdata.cfm">

Variable names remain the same. If you need to set other variables containing “checked” or “selected” to
restore checkboxes, radio buttons and drop-down menus, do so after calling the get routine.

As a programming convenience, Variables.Commentary and Variables.ErrMsg are also saved and
restored along with the Form variables. (Use Commentary for normal completion messages such as “New
contact saved to database.” Use ErrMsg for abnormal messages, such as “Zip Code not numeric”.) It’s not
a coincidence that Variables.ErrMsg is the same variable generated by Stored Procedure Call files.
Rather, this is intentionally done so that if an error occurs, you can simply save form data (call the “put”
routine) and return to the display page. Also, there’s a standard routine to display server messages,
Commentary and/or ErrMsg, which you should call at the top of your form display region:

If the form page is NOT in a frame:

<cf_sbalookandfeel ...>
<cfinclude template="/library/cfincludes/dsp_errmsg.cfm">
<cfoutput>
...

If the form page IS in a frame:

<body ...>
<cfinclude template="/library/cfincludes/dsp_errmsg.cfm">

SBA ColdFusion Programming Standards

Page 44 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

Automatic Form Data Recovery:

Like Automatic Screen Resizing and TextOnly, Automatic Form Data Recovery requires the following
line immediately after cfapplication tag that establishes the Session scope:

<cfinclude template="get_sbalookandfeel_variables.cfm">

If this line is already included in your Application.cfm file, the only step remaining to get Automatic
Form Data Recovery is to define a hidden form element called PageNames (plural), containing the names
of pages that share the same form variables.

Suppose the file containing the form is dsp_lend.cfm. You would simply add the following:

<input type="Hidden" name="PageNames" value="dsp_lend.cfm">

Also, get_sbalookandfeel_variables will define Variable.PageName (singular) for you to be the current
file name, so you could also have said:

<input type="Hidden" name="PageNames" value="#Variables.PageName#">

That technique has the advantage of being easy to copy and paste into any form. It will pick up the page
name of whatever page it happens to be in.

The reason why it’s called PageNames (plural), is that it’s actually a comma-delimited list. In general, it
will be only the current page name (a one element list, hence no commas). But if a set of pages all share
the same form variables, you can list all the pages in the set. For example, in TECH-Net, where
dsp_search.cfm contains a search criteria form and dsp_awardlist.cfm uses the same search criteria to
page through the results 25 awards at a time, you would say the following in the form in dsp_search.cfm:

... value="dsp_search.cfm,dsp_awardlist.cfm">

Automatic Form Data Recovery - Saving Just Commentary and ErrMsg (not automatic):

Automatic Form Data Recovery is done at the time of get_sbalookandfeel_variables, just after
<cfapplication>, in Application.cfm. Therefore, the saving of the Form scope occurs then (before you’ve
done anything). Hence, if you build a Commentary or ErrMsg and want it passed back to the display
page, it must be saved separately. Suppose Inc contains “/library/cfincludes”. The example below
demonstrates how this may be done:

<cfif Variables.TxnErr>
 <cfinclude template="#Inc#/put_sbalookandfeel_savemessages.cfm">
 <cflocation ((back to display page))>
</cfif>

Or, if you want to pass back ErrMsg in the case of errors and Commentary in the case of success:

<cfinclude template="#Inc#/put_sbalookandfeel_savemessages.cfm">
<cfif Variables.TxnErr>
 <cflocation ((back to display page))>
<cfelse>
 <cflocation ((forward to success page))>
</cfif>

SBA ColdFusion Programming Standards

Page 45 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

Automatic Form Data Recovery - Form Page Initialization:

You may be wondering, “if I use automatic Form Data Recovery, how do I know whether it’s the first
time the user has entered the page (so as to display defaults), and how do I know whether it’s a return to
the page (so as to display recovered form data)?” The answer is Variables.FormDataRecovered. If you
include get_sbalookandfeel_variables.cfm immediately following your <cfapplication> tag, it will always
be defined and contain “Yes” or “No”.

Also, the only safe time to apply formatting is immediately after a record first comes off of the database.
Suppose that the database contains 50000 as someone’s salary, and you format it as $50,000.00 using the
DollarFormat ColdFusion function. If form data is recovered, and you tried to format it with
DollarFormat a second time, it would crash. You would be doing, in effect DollarFormat(“$50,000.00”),
which is not a numeric input. Therefore (it bears repeating), the only safe time to apply formatting is right
after a record first comes off of the database.

That said, suppose a page had only two form fields, called Gender and Salary, that could come from the
database (existing record), or from a new record. An example initialization, partially in English and
partially in ColdFusion, without Section 508 or other standards applied, would be as follows:

<cfif NOT Variables.FormDataRecovered>
 <cfif ((creating a new record))>
 <cfset Variables.Gender = "">
 <cfset Variables.Salary = "">
 <cfelse>
 ((read from database))
 <cfset Variables.Gender = GetRecord.Gender>
 <cfset Variables.Salary = DollarFormat(GetRecord.Salary)>
 </cfif>
</cfif>
<cfswitch expression="#Variables.Gender#">
<cfcase value="M"><cfset GM = "checked"><cfset GF = ""></cfcase>
<cfcase value="F"><cfset GM = ""><cfset GF = "checked"></cfcase>
<cfdefaultcase> <cfset GM = ""><cfset GF = ""></cfdefaultcase>
</cfswitch>
<form ...>
<input type="Hidden" name="PageNames" value="#Variables.PageName#">
Gender:
<input type="Radio" name="Gender" #GM# value="M">Male
<input type="Radio" name="Gender" #GF# value="F">Female
Salary:
<input type="Text" name="Salary" value="#Variables.Salary#">
</form>

Simpler case: In the case of a search criteria form, where there isn’t any data coming off of the database,
you would simply initialize variables to their defaults:

<cfif NOT Variables.FormDataRecovered>
 <cfset Variables.Gender = "">
 <cfset Variables.Salary = "">
</cfif>

SBA ColdFusion Programming Standards

Page 46 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.16 Features Requiring Some Knowledge of JavaScript
4.1.16.1 Controlling the “ReadyLight”

The ReadyLight attribute (values “Yes” or “No”) controls whether or not to show the so-called “ready
light”. It says “Loading” against a white background when any frame isn’t fully loaded yet. It goes dark
(same shade of dark blue as the background) and says “Ready” when the page is fully loaded and ready
for data input. Its primary usefulness is in a frames environment, but it can be used by any page.

At run time (on the browser), if it becomes necessary for one frame to tell another frame to reload, you
can control the ready light by calling the JavaScripts generated for just that purpose.

If MainNavURL was NOT given (MainNav is inline), call:

top.SetReadyLightToLoading() or
top.SetReadyLightToReady().

If MainNavURL WAS given (MainNav is in a frame), call:

top.MainNav.SetReadyLightToLoading() or
top.MainNav.SetReadyLightToReady().

Normally, you would simply call SetReadyLightToLoading() and then tell the other frame to reload. The
file in the other frame would set its own top.gFrameIsFullyLoaded[FrameName] variable to true and call
top.SetReadyIfAllFullyLoaded(), which in turn would call SetReadyLightToReady() if all the frames are
fully loaded.

SetReadyLightToLoading() and SetReadyLightToReady() will be generated differently depending on
whether TextOnly is "Yes" or “No”, so it’s important not to bypass calling those functions and do what
they do in your own code. If your code references the ready light graphic directly, and the user switches
to TextOnly mode, your code will fail. So you should always go through the SetReadyLightToLoading()
and SetReadyLightToReady() functions, because they will always be correct for whatever mode the user
is in (TextOnly = “Yes” or “No”).

How the ReadyLight is typically used:

Although it can be used in a no-frames page, the ReadyLight is typically used in a frames environment.
Its purpose is to keep impatient users from entering data before all of the components of the page (frames)
are fully loaded. Sometimes it can be tricky as to how to do this, and when to reload frames.

ELend provides a good example of how the timing problems can be resolved:

1. If the page in AppData modifies the structure of a loan application (adding a new borrower, for
example), AppNav must be refreshed to show the new borrower in the navigation tree.

2. If the page in AppData modifies identifying information about the loan (the name of the loan or
the loan amount, for example), AppInfo must be refreshed to reflect that new information.

3. If the page in AppData modifies the status of the loan, MainNav may have to be refreshed to
show different buttons.

When should these various frame refreshes be done? If they’re all done at the same time (at the time the
user hits the Save/Next button in AppData), it’s very likely that AppNav, AppInfo and MainNav will win
the race to the database (because they don’t do much), and so will refresh before the update implied by
the AppData submission. Therefore, the next display page in AppData tells the other frames to refresh. So
it’s very important that the ReadyLight continues to say “Loading” until all the refreshes have completed.

SBA ColdFusion Programming Standards

Page 47 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.16.2 Creating MainNav JavaScripts

For every button name you give in the <cf_sbalookandfeel> Show attribute, you have to create a
Do((ButtonName)).js JavaScript that tells the browser what to do when the user clicks on that button.

As previously described in 4.1.5, the name of the JavaScript (both the file name and the function name it
contains) are generated from the Show name as follows:

• Strip spaces and hyphens
• Add Do before the stripped name
• Add the “.js” suffix to form the file name

So <cf_sbalookandfeel Show=”New Application,Help,Copy Application,E-Tran”> would require
creating 4 JavaScript files:

• DoNewApplication.js containing function DoNewApplication
• DoHelp.js containing function DoHelp
• DoCopyApplication.js containing function DoCopyApplication
• DoETran.js containing function DoETran

You place them all in one directory, usually /applicationname/javascripts/sbalookandfeel. You then tell
<cf_sbalookandfeel> where they are using the MainNavJSURL attribute. So in the case of TECH-Net,
where the application directory is /technet (no hyphen) on danube, but /tech-net (with hyphen) on all other
servers, you would say:

<cfswitch expression="#CGI.Server_Name#">
<cfcase value="danube.sba.gov">
 <cfset MainNavJSURL = "/technet/javascripts/sbalookandfeel">
</cfcase>
<cfdefaultcase>
 <cfset MainNavJSURL = "/tech-net/javascripts/sbalookandfeel">
</cfdefaultcase>
</cfswitch>
<cf_sbalookandfeel ...
 MainNavJSURL = "#Variables.MainNavJSURL#"
 ... >

MainNav will try to invoke these JavaScripts automatically based on what it sees in Show. If the files
don’t exist, the browser will get a JavaScript error. It’s no different than what occurs if the button
graphics are not present in /library/images/sbalookandfeel or /library/images/applookandfeel. It tries to
reference them wherever they’re supposed to be. If they aren’t there, the browser gets an error.

In the case of button graphics, if you need a new one, you can request that a new one be created for you.
The same is true of MainNav JavaScripts. If you’re not familiar with JavaScript, you can request that a
MainNav JavaScript be created for your new button. The request will be routed to someone who knows
JavaScript. Usually it’s a matter of going to a particular URL when the user clicks on the button, so
usually all you have to do is say what the URL should be along with your request.

To expedite page load rates, browsers cache JavaScripts from files with the js suffix. Caching is one of
the reasons why we’re allowed to use JavaScripts in the “thin client” of our application model. The
downside is that those JavaScripts are inherently static. They can’t contain ColdFusion variable
references. But this limitation may be circumvented as explained in the section below.

SBA ColdFusion Programming Standards

Page 48 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

Overcoming the limitations of static JavaScript:

Use MainNavHiddens to save <input type=”Hidden”> tags in the form that contains the MainNav
buttons. This allows you to access server data in the MainNav JavaScripts (which execute on the
browser). For example, in TECH-Net, the index pages are in /technet/docrootpages (no hyphen) on
danube, but they’re in /tech-net/docrootpages (with a hyphen) on enile, and in / (the document root) in
production. You could therefore do the following:

<cfswitch expression="#CGI.Server_Name#">
<cfcase value="danube.sba.gov">
 <cfset IndexPagesURL = "/technet/docrootpages">
</cfcase>
<cfcase value="enile.sba.gov">
 <cfset IndexPagesURL = "/tech-net/docrootpages">
</cfcase>
<cfdefaultcase>
 <!--- Have to omit trailing slash, hence: --->
 <cfset IndexPagesURL = ""><!--- document root --->
</cfdefaultcase>
</cfswitch>
<cfsavecontent variable="Variables.MainNavHiddens"><cfoutput>
<input type="Hidden" name="IndexPath" value="#IndexPagesURL#">
</cfoutput></cfsavecontent>
<cf_sbalookandfeel ...
 MainNavHiddens = "#Variables.MainNavHiddens#"
 ... >

Then, in DoHome.js, which gets invoked when the user hits the Home button in MainNav, you can do the
following:

Function DoHome (pForm)
{
top.location.href = pForm.IndexPath.value + "/index.cfm";
}

Hence, although the JavaScripts invoked by MainNav are static (js suffix, not cfm suffix), they can
nevertheless be made to perform dynamic functions (and know things that the server knows), as directed
by hidden form tags in MainNavHiddens. That’s the reason why all of the Do((ButtonName)) JavaScripts
are passed a reference to the MainNav form, to give static JavaScripts access to ColdFusion data. It’s a
very powerful capability that assures that we will never be limited in any way by the static nature of
scripts.

You could even look up a GLS logged-in user’s username, find out the user’s gender and family name,
pass them in hidden fields, and address the user by name in alerts. (“Sorry, Mr. Williams, but the Help
button is not yet implemented.”) Of course, that would not be a professional thing to do on a government
Website. It would establish an overly familiar tone and might even raise privacy concerns that the
Website was somehow spying on the user. So it’s just a facetious example, but one that illustrates the
power and flexibility of MainNav.

SBA ColdFusion Programming Standards

Page 49 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.16.3 AppNav DHTML Tree Using <cf_sbatree> and <cf_sbatreeitem>

The SBA’s <cf_sbatree> and <cf_sbatreeitem> custom tags were designed to exactly mimic <cftree> and
<cftreeitem>. If you don’t already know how to use <cftree> and <cftreeitem>, your learning curve for
these custom tags is the same as learning how to use the ColdFusion versions. But if you already know
how to use the ColdFusion versions, your learning curve is minimal. Here are the differences:

• In keeping with the “thin client” aspect of the SBA Application Model (see 3.1.1), our custom
tags generate the tree using DHTML and cached JavaScript. The ColdFusion tags generate Java
or Flash. It has been estimated that DHTML trees are so lightweight, they can handle upwards of
25,000 nodes, whereas Java bogs down after only a few hundred nodes and Flash at a few
thousand. With our custom tags, the user doesn’t have to install any plug-ins or wait on the
initialization of the Java or Flash execution environment.

• <cf_sbatree> does not have to exist within a <cfform>. In fact, it doesn’t even need to exist
within an HTML <form>. That’s because pressing a node triggers the execution of a JavaScript,
not the submission of a form. You are responsible for defining the JavaScript, or you may request
that one be created for you by one of the SBA’s JavaScript specialists. It will be passed the value
attribute of the node that the user clicked. Another, optional attribute you can provide is
ExpandAll, which will initialize all folders to being expanded (<cf_sbatree ExpandAll="Yes">).

• <cf_sbatreeitem> has only 5 attributes, not the full set of attributes supported by <cftreeitem>:
o display Display name of node, the text that appears on the screen, mandatory
o expand “Yes” or “No” (currently not supported), optional
o img “Document” or “Folder”, mandatory
o parent value attribute of Folder node that contains this node, optional if at top level
o value value passed to your JavaScript if the user clicks the node, mandatory

• Our custom tags don’t maintain any separate “Path” value that you can test on the server. In fact,
you don’t even necessarily invoke the server at all. The only thing you have is the value of the
clicked node’s value attribute in your JavaScript on the browser. If you want to track Path, you
have to do so yourself with the value attributes you generate. If you want to pass this information
to the server, you have to do so yourself.

Example (typically the top level folder has the value “root”, but that didn’t fit in this page, so using “Y”):

<cf_sbatree function="window.alert"><!--- Simply display value --->
<cf_sbatreeitem display="Year" img="Folder" value="Y">
<cf_sbatreeitem display="01" img="Document" parent="Y" value="1">
<cf_sbatreeitem display="02" img="Document" parent="Y" value="2">
<cf_sbatreeitem display="03" img="Document" parent="Y" value="3">
<cf_sbatreeitem display="04" img="Document" parent="Y" value="4">
<cf_sbatreeitem display="05" img="Document" parent="Y" value="5">

</cf_sbatree>

Result (after clicking 03):

SBA ColdFusion Programming Standards

Page 50 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.16.4 Server Callbacks in the AppHidden Frame

Sometimes, while the user is filling out data in one of your forms, you want to get information that exists
only on the server. You don’t want to submit the current form to do this, but you have to make some sort
of server request. In this case, you might want to code a server callback in the AppHidden frame.

For example, suppose the user is filling out an address, and you’d like to supply the state, county code
and city, based on the Zip code the user entered (screen snapshots from the ELend Project Info screen):

If more than one item is found, you want to alter the drop-down menu to show all State/County/City
combinations, to let the user choose which one, and preselect “Not selected yet”:

If there’s exactly one State/County/City for the Zip code, you would still want to populate the drop-down,
but in this case, you would want to preselect the only one found:

If nothing was found for the Zip code, you would want to pop up a JavaScript alert:

SBA ColdFusion Programming Standards

Page 51 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

“How is this magic performed?” you may be wondering. Well, there are several steps:

1. In the <input type="button"> that initiates the lookup, define an onClick JavaScript to do a
callback to the server in the hidden frame, AppHidden. There are 2 ways to do this:

<input type="Button" value="Lookup state/... (etc)" onClick="
top.AppHidden.location.href = 'dsp_callbackpage.cfm?Zip5Cd='
 + this.form.Zip5Cd.value;
">

or
<input type="Button" value="Lookup state/... (etc)" onClick="
window.open('dsp_callbackpage.cfm?Zip5Cd='
 + this.form.Zip5Cd.value, 'AppHidden');
">

2. Write the server callback ColdFusion file to accept Zip5Cd on the URL and return a page with

JavaScript to populate the drop-down menu (or display an alert that the Zip code wasn’t found).

If you want to see an example of the server callback page used from the ELend Project Info screen
example above, it’s in /elend/applications/dataentry/dsp_lookup_by_zip.cfm. It’s a rather complex
example, because it can accept Zip with or without Zip+4. Furthermore, it accepts the form element
names of the drop-down menu and other form elements to populate them as well. That’s because it has to
be used on pages that have 2 lookups by Zip, one for physical address and one for mailing address. So to
read it, you should also look at /elend/applications/dataentry/dsp_proj.cfm (the Project Info screen
used in the examples above), so that you can see its form element names.

In the future, AppHidden frame callbacks will be generalized for use in any application and reside in
/library/callbacks. Then, if you want to add a Zip code lookup, NAICS code lookup, franchise code
lookup, etc, you have a standard place to look for existing code to do so.

Warning about Microsoft Internet Explorer 5 and above:

As of MSIE version 5, you can no longer populate a drop-down in another frame directly.

In order to write JavaScript that’s cross-browser compatible and works in MSIE 5+, you must define a
JavaScript function in the frame that defines the drop-down menu. (In SBA look-and-feel, the frame that
defines the drop-down would generally be AppData.) In that function, you write general-purpose code to
populate the drop-down menu’s options array (clear the array, add a new option to the end of the array,
etc). If you find it easier to do so, write several general-purpose functions.

Then, when you write the server callback in AppHidden, the JavaScript it generates must administer calls
to the general-purpose function(s). In other words, in the usual case, the callback in AppHidden will do
JavaScript calls of the form top.AppData.FunctionName(parameters) to manipulate the drop-down in
AppData.

Perhaps in the future, the ELend server callbacks in AppHidden will be made into general purpose
utilities you can call out of /library. In fact, with current emphasis on shared code, they probably will be.
At the moment, however,, they are not in /library, so you would have to use the routines in /elend as
examples.

SBA ColdFusion Programming Standards

Page 52 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.17 MainNav as a Frame

Generally speaking, the contents of MainNav don’t change much. Usually, the buttons the users see there
are usually based on the user’s permissions and roles in the application. Consequently, it’s a good
candidate for turning into a frame.

In the past, when we couldn’t mandate that users have JavaScript turned on, there was no way to make the
MainNav buttons do anything without defining a <form> and an action page that the form went to.
Typically, the page that images the MainNav frame would be called dsp_mainnav.cfm, and its action page
would be called act_mainnav.cfm. The idea was that the action page would do whatever the JavaScript
would have done, if the user had JavaScript turned on.

In time however, it became apparent that there were some things that this design just simply could not do.
In particular, it was impossible to vary the “target frame” for the action to take place. MainNav could not
force the resubmission of AppData (standard look-and-feel button “Save”) unless ALL the buttons caused
the resubmission of AppData. Similarly, it would be impossible for some buttons to pop up a new
window without all buttons popping up a new window.

Therefore, currently, we use JavaScript in MainNav (see 4.1.16.2) and the only real consideration is how
to generate the buttons. The answer is, you call a different custom tag, <cf_mainnav>, as follows:

<cf_mainnav
 attribute=value
 attribute=value
 ...>

Note that there isn’t any </cf_mainnav>. Attributes (defaults of multiple-choice features shown in bold):

Configs - Used in development of new versions of custom tag
Debug - Used in development of new versions of custom tag
InFrame - "Yes" or "No", because you’re in a frame, use "Yes"
LibURL - Used in development of new versions of custom tag
MainNavHiddens- Used to pass CF data to MainNav JavaScripts
MainNavJSURL - Directory of MainNav JavaScripts
ReadyLight - "Yes" or "No" – whether to turn on feature
Show - List of buttons to appear in MainNav
ActionURL – Old, URL to handle submission of MainNav form.
TextOnly - Old, "Yes" or "No", nowadays use AutoResize

Note that, except for InFrame and Width, these are the same features that got an asterisk in 4.1.4,
indicating that they would be passed to an internally generated call to <cf_mainnav> when you aren’t
putting MainNav into a frame. So all of your knowledge of <cf_sbalookandfeel> carries over.

It’s important that features match up to the frames document that defines MainNav. (If the frames page
says ReadyLight=”No” but the call to <cf_mainnav> says ReadyLight=”Yes”, there will be a JavaScript
error because the ReadyLight won’t be defined.) Also, you have to <link> /library/css/sba.css and pick up
the proper MainNav background color with <body class="headernav">. Other than that, it’s easy.

SBA ColdFusion Programming Standards

Page 53 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.18 Using SBA Look-and-Feel on a Static HTML Page

Now that the automatic resizing feature is taking place in HTML, CSS and external JavaScript (not in
ColdFusion), its quite possible to use the same <div> tags on a static HTML page. If you do this, the page
will resize itself every time the user resizes its window, and the look-and-feel will be compatible with all
of our ColdFusion applications that use SBA look-and-feel.

In “new SBA look-and-feel”, ColdFusion is used just to build the <div> and <iframe> tags properly. So,
generally speaking, the easy way to build the tags properly for a static page is to use a ColdFusion page
and capture the source with View Source. The resulting static page will display properly on a server that
doesn’t have ColdFusion.

Prerequisites:

• /library/css/sba.css
• /library/css/sba.textonly.css (if text only) - <link> tag AFTER sba.css (to override its classes)
• /library/images (if NOT text only)
• /library/javascripts/sbalookandfeel/sbalookandfeel.js
• your own JavaScripts, associated with the MainNav buttons you use

Containment hierarchy for <div> tags (give these values as the id attribute):
(body)
 DivMarginT
 DivMarginR
 DivMarginB
 DivMarginL
 DivEnvelope
 DivSBALogo
 DivMainNav
 DivAppName
 DivAppInfo
 DivAppNav
 DivAppData
 DivBotMost, in its entirety (and tags too)

 (DivAppHidden is not needed in a static environment, because callbacks require ColdFusion.)

Comments:

• DivSBALogo must have style.display already defined for the AppData maximize/minimize
feature to work. Therefore, even if you don’t give the background style because the page is text
only, you still need style="display:;" or style="display:block;", to define style.display.

• For the same reason, AppData’s style.left and style.width must already be defined. So always
specify style="left:___px; width:___px;" (according to the size of AppData).

• To keep sbalookandfeel.js from erroring, all of the <div> tags listed above have to be defined. So
if you want to not have AppInfo and expand MainNav downward into AppInfo’s space, specify
AppInfo’s style="display:none;" and override the height of MainNav with a style attribute.

• If you define any of the <div> tags as containing frames, give the frame the same name as the Div
that contains it, minus the “Div” part. And give the frame the same id attribute, changing Div to
Frm. Example <iframe name="AppData" id="FrmAppData" … >.

• If you define frames for MainNav or AppInfo, specify the scrolling="No" attribute.
• Again, it’s easiest to let cf_sbalookandfeel generate this stuff correctly for you and just copy the

HTML from View Source. The custom tag knows all the rules.

SBA ColdFusion Programming Standards

Page 54 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.1.19 Read the Custom Tags to Get More Information

The most recent and current information about cf_sbalookandfeel and cf_mainnav can be found in the
comment headers of the custom tags themselves. At most ColdFusion installations, custom tags are
typically in the /opt/coldfusion[mx[7]]/CustomTags directory. But at the SBA, they’re under /library:

/library/customtags/sbalookandfeel.cfm
/library/customtags/mainnav.cfm

Every attribute is documented in the comment headers, even the more obscure ones that few developers
ever use. Furthermore, by reading the custom tags, you can see how they do what they do. It makes them
less mysterious.

SBA ColdFusion Programming Standards

Page 55 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.2 Stored Procedure Call Files

The stored procedure call files (prefix “spc_”) greatly sped up our migration to ColdFusion MX. They
have been programmed to allow lots of tricks to get the most out of each call.

4.2.1 Make Sure that the SPC Files Have Been Generated

SPC files must be generated by a utility called the “Stored Procedure Call File Generator”, or SPC file
generator for short.

The SPC file generator

• asks for a login that’s a valid user in the database being generated for
• reads the database scripts that generated the stored procedures
• parses them to find the parameter list
• uses the parameter list to generate CFPROCPARAMs in the right order, datatype, etc
• generates the SPC files into /cfincludes/dbname, where dbname is the name of the database

Not all developers are permitted to generate SPC files because only a few can create the directory into
which the SPC files are stored. Rather, you must request that the SPC files be generated if they don’t
already exist.

4.2.2 Request Regeneration of SPC Files Whenever Parameter Lists Change

Stored procedures can be recompiled over and over again without having to regenerate the SPC files,
provided that their parameter lists have not changed. If their parameter lists change, however, they must
be regenerated.

4.2.3 Load Only the Columns You Need into the Variables Scope

The SPC file uses CFPARAM to default every input parameter to the nullstring. Anything you load into
the Variables scope before the SPC file call will override the CFPARAM. Therefore, if a stored procedure
has an Identifier (action code) that requires only 2 of its 20 input parameters, simply set
Variables.Identifier and the 2 parameter names in the Variables scope. The SPC file will do the rest for
you.

4.2.4 But Use Defaults Sensibly

If you’re conducting only one SPC file call in a ColdFusion page, go ahead and use the defaults all you
want. (The defaults are all the CFPARAM tags at the start of the SPC file.) But if you’re making multiple
calls, remember that once a variable is defined, it will be used on subsequent calls and the CFPARAM
tags will have no effect. This is particularly true of parameter names commonly used by the database
group, such as @Identifier. Once Variables.Identifier is defined, it will continue to be used in subsequent
calls with the last value it was given. Therefore, if lots of stored procedure calls are involved, it’s better to
Variables.Identifier explicitly on each call.

Always set parameters of type bit to 0 or 1. Parameters of type bit cannot be null.

SBA ColdFusion Programming Standards

Page 56 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.2.5 Use LogAct to make error messages more user-friendly

The SPC files contain standardized error handling. Not knowing what you were intending to do with the
call, the SPC files simply say “While trying to #Variables.LogAct#, …” and default LogAct to “call
((name))”. So if you don’t set your own LogAct (“logical action”), your error messages will look like this:
“While trying to call FrnchsSelTSP, ...” Jargony names like that can frighten non-computer-savvy users
who may worry that they broke something important. So if the reason for the call was to validate a
franchise code the user gave you, you can load Variables.LogAct with “validate the franchise code”
before calling the SPC file. That way, if a database error occurs, the message will be much friendlier:
“While trying to validate the franchise code, ...”

4.2.6 Use Variables.TxnErr for Transaction Control

TxnErr carries on a major role in transaction control. Per a rule established by the database group, once
TxnErr has been set to “Yes” by any of the SPC files in a transaction, none of the remaining calls to SPC
files will try to call their associated stored procedures. Furthermore, you can use it to decide whether to
roll back the transaction.

Example:

<cftransaction action=”BEGIN”>
<!--- Numerous calls to SPC files occur here. --->
<cfif Variables.TxnErr>

<cftransaction action=”ROLLBACK” />
<cfelse>

<cftransaction action=”COMMIT” />
</cfif>

</cftransaction>

The two inner CFTRANSACTION tags have a trailing slash inside them to indicate that they have no
closing tag. This is a convention from XML that was adopted by ColdFusion for this purpose, so as not to
prematurely terminate the outer CFTRANSACTION tags.

4.2.7 Retrieving Single Result Sets

If all you want to retrieve is one result set, you can use Variables.cfprname to set the query variable name
for the result set. If you want to retrieve a result set other than the first one, set Variables.cfprset (which is
otherwise defaulted to 1). When the CFPROCRESULT tag is generated (“cfpr”) it will use these for the
name and set attributes. The default value for Variables.cfprname is “Ignored”, because you’re probably
going to ignore the result set if you didn’t set Variables.cfprname to something more meaningful.
Example:

<cfset Variables.Identifier = 11>
<cfset Variables.LoanAppNmb = Form.LoanAppNmb>
<cfset Variables.LogAct = "retrieve collateral">
<cfset Variables.cfprname = "getCollat">
<cfinclude template="/cfincludes/loanapp/spc_LoanCollatSelTSP.cfm">
<cfif NOT Variables.TxnErr>

<cfif getCollat.RecordCount GT 0>
<!--- etc --->
</cfif>

</cfif>

SBA ColdFusion Programming Standards

Page 57 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.2.8 Retrieving Multiple Result Sets

The SPC files allow you to use Variables.cfpra (“CFPROCRESULT array”) to retrieve multiple result
sets,. If it’s defined and is a ColdFusion array, the SPC files expect the name to be in column 1 and the set
to be in column 2 of the array. The following is a technique to allow easily adding, deleting or re-ordering
the result sets in response to stored procedure changes:

<cfset Variables.cfpra = ArrayNew(2)>
<cfset i=0>
<cfset i=i+1><cfset cfpra[i][1]="getNAICS"><cfset cfpra[i][2]=i>
<cfset i=i+1><cfset cfpra[i][1]="getStats"><cfset cfpra[i][2]=i>
<cfset i=i+1><cfset cfpra[i][1]="getPrins"><cfset cfpra[i][2]=i>
<cfset i=i+1><cfset cfpra[i][1]="getBorrs"><cfset cfpra[i][2]=i>
<cfset i=i+1><cfset cfpra[i][1]="getGuars"><cfset cfpra[i][2]=i>
<cfset Variables.LogAct ="retrieve loan data">
<cfinclude template="/cfincludes/loanapp/spc_LoanPrintSelCSP.cfm">
<cfif Variables.TxnErr>

<cfoutput>#Variables.ErrMsg#</cfoutput>
<cfabort>

</cfif>
<cfset ArrayClear(Variables.cfpra)>
<cfset Variables.cfpra = "">

Note the last 2 lines. If you leave Variables.cfpra as a ColdFusion, it will continue to be used in future
SPC file calls. This is a safe way to make sure that that doesn’t occur.

SBA ColdFusion Programming Standards

Page 58 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.2.9 Calling a Stored Procedure in a Different Database

Calling a stored procedure in a different database requires that one first manually edit an SPC file. SPC
files are usually generated. Therefore, you generally don’t want it to reside in the cfincludes subdirectory
associated with its database. Otherwise, the next time the entire database’s SPC files are regenerated
(perhaps to add a new feature to all of them), it will get overlaid and you’ll have to re-edit it manually
again. If it’s application-specific code, you might copy it to a subdirectory of your application’s top
directory.

Suppose you need to access sbaref’s TechAreaCdSelTSP from within the fast datasource. There are 2
stored procedures with that name, one in the fast database and one in the sbaref database. The standard
SPC files would be in:

/cfincludes/fast/spc_TechAreaCdSelTSP.cfm
/cfincludes/sbaref/spc_TechAreaCdSelTSP.cfm

Though rather complicated, there are 2 ways to call the sbgaref stored procedure from the fast datasource:

(1) You could copy it out of the standard /cfincludes directory entirely, and put it into your application
directory, clearly identifying it as application-specific code:

/fast/cfincludes/sbaref/spc_TechAreaCdSelTSP.cfm

(2) Alternatively, if you think someone else in some other application might have need to do the same
thing, you could keep it in the standard /cfincludes directory hierarchy but change its name. That is, copy
it from the sbaref subdirectory to fast subdirectory, while changing its name to:

/cfincludes/fast/spc_sbaref_TechAreaCdSelTSP.cfm

The choice of where to create the new file is based on whether another application needs to do the same
thing (call the sbaref stored procedure using the fast datasource).

Either way, your new custom SPC file will not conflict with either of the standard, generated SPC files.
On the next regeneration of standard fast or sbaref SPC files, the new file you’ve just created won’t be
overlaid.

Now you have to modify the new file. The trick is to make sure that every output CFPROCPARAM has a
value attribute, even though it won’t be used. Here’s what you have to do:

(1) In the new file, edit <cfstoredproc procedure=”sbaref..TechAreaCdSelTSP” …
(2) In the new file, add value=”” to every <cfprocparam type=”Out” …

It’s not clear why this works, nor whether or not it’s still necessary add the value clauses under CFMX 7.
(It hasn’t been tested yet under CFMX 7. Regardless, the file would still have to be copied, so that the
cfstoredproc procedure attribute can be manually changed without risk of being overlaid.)

SBA ColdFusion Programming Standards

Page 59 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.2.10 How to use it

• Login > Choose Function > Developer Utilities > Generate SPC Files.

• Select datasource. New options will become available (dynamic HTML).

• Answer new fields on the screen:

o If the login associated with the datasource can read stored procedure scripts (and
most can), leave username and password blank. Else enter a Sybase or Oracle
database login that can, according to whether the datasource is Sybase or Oracle.

o Some databases have "internal management" stored procedures (beginning with
"IM") for everything. In that case, select "Include IMs".

o If the application has public functions, such that "select stored procedures"
(ending in SelTSP or SelCSP) can be done withotut logging into GLS, select
"Datasource" on the next line.

o And if you only want to generate for a stored procedure that was recently
changed, sort by "Create Date", so that it'll be near the top of the list that'll be in
reverse chronological order.

• Press "Get Stored Procedure Names".

• Check the stored procedures you want to regenerate. There are also checkboxes at the top
and bottom of the list to Check/Uncheck All. Press "Generate Checked".

• Last but not least, this process is state-sensitive. So if you get in trouble (selected the
wrong thing perhaps), start over from the beginning.

SBA ColdFusion Programming Standards

Page 60 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.3 Logging

There are now logging routines that can be used (some automatically, some manually) to log events in
applications for performance monitoring purposes, not for audit trails of security violations or anything
else which may violate privacy regulations. The logs are accessible with any Web browser, so specifically
may NOT store anything security or privacy related in the logs. We may, at some time in the future,
choose to extend the logging feature with other types of logs, but for now, our logging routines are for
performance monitoring only.

The standard SBA logging routines use “log4j” an open source Java-based logging interface that imposes
almost no performance penalty at all (nanoseconds) when logging is turned off and minimal overhead
(microseconds) when it’s turned on. Furthermore, logging can be turned on or off from outside the
application. For this reason, all SBA ColdFusion applications will be required to support logging unless
granted a specific exemption.

To prevent a worst-case scenario where logging is crashing CF pages, and we need to get into the logging
administration CF pages to resolve this matter, the logging administration pages themselves are exempted
from supporting logging. Otherwise, it’s envisioned that no other applications will be exempt. Logging
will be a global, system-wide feature on all SBA servers.

4.3.1 Turning On Logging Support – The “Master Switch”

Since the summer of 2005, CF pages have been required to perform the following include as soon as
possible in the execution of the page:

<cfinclude template="/library/cfincludes/inc_starttickcount.cfm">

This is usually done in an Application.cfm file, so that all pages within a directory are automatically
converted to compliance with this standard. Since this precedes the setting of configuration parameters
(see 5.2.1), the path must be hard-coded.

The comment header (see 3.3.5) takes up no execution time, so it can precede this include, and
applications that require setting CFOutputOnly mode must have that as the very first line. The master
switch that turns on logging support is setting Request.SBALogSystemName before the include as well.
Therefore, the order of statements at the beginning of the page (usually in Application.cfm) is as follows:

<cfsetting enablecfoutputonly="Yes"><!--- If the app uses this. --->
<!---
AUTHOR: ... (etc, required comment header, see 5.2.1)
--->

<cfset Request.SBALogSystemName = "pronet">
<cfinclude template="/library/cfincludes/inc_starttickcount.cfm">

<!--- Configuration Parameters: --->
...

The reason why SBALogSystemName is in the Request scope, not the Variables scope, is so that we can
add logging to custom tags, regardless of how deeply they’re nested in other custom tags.

SBA ColdFusion Programming Standards

Page 61 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.3.2 What to Use as the System Name – GLS Systems

For applications that require logging in through GLS, if there is only one GLS System name associated
with it, the value of Request.SBALogSystemName. For example, in the Eligibility Checklist application,
there is only one GLS System name (“Eligibility”), so you would set Request.SBALogSystemName to
“Eligibility”:

<cfset Request.SBALogSystemName = "Eligibility">
<cfinclude template="/library/cfincludes/inc_starttickcount.cfm">

If more than one GLS System name exists for the application, it must initially be set to “GLS” and then
later reset to the specific GLS System name as soon as it’s been determined. For example, in Electronic
Lending, if the URL of the page is in the /elend/applications directory, or its subdirectories, the GLS
System name is “LoanOrig”. But if the URL of the page is /elend/servicing directory, or its
subdirectories, the GLS System name is “LoanServ”. So the overview of what needs to be done is:

<cfset Request.SBALogSystemName = "GLS">
<cfinclude template="/library/cfincludes/inc_starttickcount.cfm">

...
<cfswitch expression="#Variables.RequestedSubsystemDir#">
<cfcase value="applications">
 <cfset Request.SBALogSystemName = "LoanOrig">
 ... <!--- other inits, such as username and password --->
</cfcase>
<cfcase value="servicing">
 <cfset Request.SBALogSystemName = "LoanServ">
 ... <!--- other inits, such as username and password --->
</cfcase>
</cfswitch>

Note that you don’t redo the include of inc_starttickcount.cfm. That must be done only once, as described
in the previous section. The resets of Request.SBALogSystemName simply cause all FUTURE logging
requests to go to the log file for the one appropriate to your system.

4.3.3 What to Use as the System Name – Non-GLS Systems

Your application will be issued a “Non-GLS System name” by the applications administrator for
production applications. This is what you will use to set Request.SBALogSystemName. The Non-GLS
System name will be composed solely of letters and numbers, without spaces or special characters. This
name is also case-sensitive.

Examples of Non-GLS Systems include PRO-Net (admin functions), TECH-Net (admin and federal
agency functions), the ELend Check-In/Check-Out Utility, the Stored Procedure Call File Generator,
SrTars, etc.

As Non-GLS Systems are gradually, converted over to GLS, the list of Non-GLS Systems will get shorter
and shorter, but it will never disappear. The reason is that there’s at least one application that can never be
made into a GLS System, namely, GLS itself. You can’t require a user to be logged into GLS in order to
log into GLS!

SBA ColdFusion Programming Standards

Page 62 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.3.4 All Developers Will Be Application Administrators in Development

It is envisioned that ALL developers will be application administrators in development, so that you will
be able to turn logging on and off for your own code for debugging purposes. This privilege, however,
disappears in test and production. Only SBA employee managers will be application administrators in test
and production.

Note that this means that you will be able to edit the list of Non-GLS System names. If you’re working on
a Non-GLS System, you will be able to name it whatever you like. For example, if you’re working on
PRO-Net, you can give it the Non-GLS System name of “pronet”, or “PRONet” or “PRONET” (not
“PRO-Net”, however, due to the restriction that the name must be composed of letters and/or numbers).

This offers the illusion that you have more freedom than you actually have. In actuality, you don’t pick
the Non-GLS System names, the application administrator for production does. You have to go along
with that name because the name in development must match the name in test and production.

Suppose you use “PRONET” in development, but it’s defined as “PRONet” in production. When the
production application administrator tries to turn on logging in production, logging won’t turn on,
because the case-sensitive name won’t match.

4.3.5 The CF/Logging Admin Pages

If you have been given the “SecurityAppAdmin Role” in GLS, when you go to the Choose Function page,
you will see a hotlink “CF/Logging Admin”. If you follow that hotlink, you will be taken to the
CF/Logging Admin pages. In the AppNav (left) frame, you will see hotlinks for Non-GLS Systems,
Logging and Log Files.

In the Non-GLS Systems page, you will be able to control the list of Non-GLS Systems:

In the Logging page, you will be able to turn logging on at a variety of levels:

In the Log Files page, you will be able to empty out log files or copy them to a cycled backup file name
(examples, log_GLS.1.txt, log_GLS.2.txt, log_GLS.3.txt, etc) before emptying them out:

SBA ColdFusion Programming Standards

Page 63 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.3.6 Logging Levels – Debug, Info, Warn, Error and Fatal

Logging is turned on at a particular LEVEL, which is currently Debug, Info, Warn, Error or Fatal (in
order of increasing severity). When a particular level is turned on, every more severe level is also turned
on. You may also set logging to All or Off, although these not actually logging levels, since you can’t
write log entries at the All or Off levels. All is just a synonym for whatever the lowest level is, and Off is
just off, no logging will be done at all. In the Logging page, they’re listed as follows:

In the future, CFMX may support a newer version of log4j which supports logging at the Trace level as
well. (Trace is between All and Debug.) Trace allows you to enter tons of logging requests (one for each
branch of a <cfif>, one for each <cfcase>, etc) but not turn the Trace logs on unless you absolutely have
to. (You could turn Debug logs on without getting a full trace of everything that got done.)

But for now, the highest level of log4j that CFMX supports is 1.1.3, which doesn’t support the Trace
level. For now, you have to use Debug level if you want to trace execution flow in your application.

It is critical to remember that At The SBA, performance monitoring is logged at the info level.

4.3.7 Manual Logging Routines That You’re Required To Add

ColdFusion features numerous automatic logging features. The Stored Procedure Call File Generator, for
example, is going to be modified to do logging. With this feature in place, you won’t have to add
anything to support logging stored procedure calls, as you should already be using SPC files, you won’t
have to add a thing to support logging stored procedure calls.

For other log entry types, on the other hand, you will have to add things manually. Starting with the
easiest one first:

4.3.7.1 At Start of Request - inc_starttickcount.cfm

Since the summer of 2005, CF pages have been required to cfinclude inc_starttickcount.cfm as soon as
possible in the execution of the page: The original reason was so that it could call the built-in ColdFusion
function TickCount(), which later allows cf_lastmodified to display the total elapsed time to process the
page.

Later, this became a perfect place to add a logging call to log the start of execution of the request.
Currently, this includes a standard for 2 reasons: Display of elapsed time and logging start of request.

See 4.3.1 for a discussion of precisely where it belongs (generally speaking, between the comment header
and configuration parameters of Application.cfm).

SBA ColdFusion Programming Standards

Page 64 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.3.7.2 At End of Request - OnRequestEnd.cfm

To capture end-of-request logs, create a file called OnRequestEnd.cfm in the same directory level as
Application.cfm. In it, the only executable statement you need is as follows:

<cfinclude template="/library/cfincludes/OnRequestEnd.cfm">

In addition to doing an end-of-request log, it will also turn off ShowDebugOutput unless you specifically
allow it with <cfset Variables.Debug = “Yes”>. This causes your page to display as it would in test or
production if everything went well (so you get to end-of-request). But if you crash, this code isn’t done,
so you still get to see debug output. It’s like having ColdFusion debugging on “only when you need it”. If
you don’t want this feature, set Variables.Debug to “Yes” just before the include tag.

Because OnRequestEnd.cfm is executed on normal completion of every page, you have effectively added
end-of-request logging to all of your application’s pages, all at once. OnRequestEnd.cfm file affects a
page only if the associated Application.cfm in the same directory was used at start-of-request time. So if
you have more than one Application.cfm file, you will need to create one OnRequestEnd.cfm for each of
them.

4.3.7.3 log_SleQuery.cfm

log_SleQuery.cfm can be done with a global search and replace command. Just after every </cfquery>,
add the following:

<cfinclude template="/library/cfincludes/log_SleQuery.cfm">

4.3.7.4 log_SleCatch.cfm

log_SleCatch.cfm can also be done using a global search and replace command. Just before every
<cfcatch>, or before every </cfcatch> (but not both because you only want to do it once), add the
following:

<cfinclude template="/library/cfincludes/log_SleCatch.cfm">

SBA ColdFusion Programming Standards

Page 65 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.3.8 Manual Logging Routines That Are Optional

We also have other logging routines that you have to add manually, but only if you want to use them.

4.3.8.1 log_SleCustom.cfm

For anything you want.

Under construction.

4.3.8.2 log_SleTimeBeg.cfm, log_SleTimeEnd.cfm and log_SleTimeAccum.cfm

For timing segments of code, logging them one at a time or just totals at end-of-request.

Under construction.

4.3.8.3 log_SleTrace.cfm

We’re planning on a way to support Trace logging even though it isn’t supported yet by log4j 1.1.3.

Under construction.

SBA ColdFusion Programming Standards

Page 66 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.3.9 Where the Log Files Reside

Logs reside at http://servername/logs/log_XXX.txt where XXX is the Request.SBALogSystemName.
Examples:

http://danube.sba.gov/logs/log_LoanOrig.txt
https://yes.sba.gov/logs/log_SrTars.txt
http://tech-net.sba.gov/logs/log_TECHNet.txt

Logs don’t exist until logging has been turned on for the particular GLS or Non-GLS System, so the
hotlinks above may not yet exist. You can also browse to the directory name (we haven’t turned of
directory listing), so that you can see all existing log files.

Viewing them in a Web browser is convenient and acceptable when you’re in a hurry, but the tab
characters that the log files contain are rendered irregularly by browsers. If you want to see the columns
more accurately, do the following:

• Do a File > Save As… in the browser, or download the file using FTP (if you have an FTP
account on the server to do so).

• Once it’s on your PC, right click on it.
• In the pop-up menu, select “Open With …” and choose Excel from the application list.

4.3.10 Cooperating With Other Developers in Development

Since all developers will be application administrators in development, the potential exists for logging
conflicts in which different developers may log on or off a system simultaneously. To prevent this from
occurring, it is essential that you do not touch a system if it’s not your own.

Hence, if you go into the Logging page to turn on logging for GPTS at the Debug level, and logging is
already on for LoanOrig at the Info level, simply turn on logging for GPTS. Don’t touch the setting for
LoanOrig.

Of course, there’s still the possibility that 2 developers could encounter conflict if they both entered the
Logging page at the same time. Neither would see the change being made concurrently. Whoever hit Save
last would have his/her changes, that would become the current logging setting. Since there’s no way to
prevent this from occurring, it is recommended that you call the developer who is simultaneously logged
in to notify them and coordinate your logging changes.

http://servername/logs/log_XXX.txt�
http://danube.sba.gov/logs/log_LoanOrig.txt�
https://yes.sba.gov/logs/log_SrTars.txt�
http://tech-net.sba.gov/logs/log_TECHNet.txt�

SBA ColdFusion Programming Standards

Page 67 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.4 Standard Callbacks

4.4.1 dsp_LookupZipToDropdown.cfm

The ELend feature of looking up Zip codes and populating form fields was described above in section
4.1.16.4, Server Callbacks in the AppHidden Frame. Due to its usefulness, this was the first callback
routine added to /library/callbacks. To use dsp_LookupZipToDropdown.cfm, there are only 2 things that
a data entry form in the AppData region of SBA look-and-feel needs to do:

1. Define the LookupZipToDropdown script and the 2 other library scripts it uses (EditMask and
SetFormEltValue). Some browsers compile JavaScript as soon as it loads. To be compatible with
all browsers, EditMask and SetFormEltValue should be defined before LookupZipToDropdown,
so that LookupZipToDropdown’s references to the other 2 scripts won’t result in JavaScript
errors.

2. Call the JavaScript LookupZipToDropdown properly.

Everything else is handled by /library.

Defining the scripts if AppData is a frame: Somewhere in the <head>, add the following (if you don’t
already have them). If you’ve defined a configuration variable for /library/javascripts, you should use it
instead of the hard-coded references shown here, of course:

<script src="/library/javascripts/EditMask.js"></script>
<script src="/library/javascripts/SetFormEltValue.js"></script>
<script src="/library/javascripts/LookupZipToDropdown.js"></script>

Defining the scripts if AppData is inline (almost the same):

<cfsavecontent variable="Variables.JSInline">
 <cfoutput>
<script src="/library/javascripts/EditMask.js"></script>
<script src="/library/javascripts/SetFormEltValue.js"></script>
<script src="/library/javascripts/LookupZipToDropdown.js"></script>
</cfoutput>
</cfsavecontent>
...
<cf_sbalookandfeel ... JSInline="#Variables.JSInline#" ... >

Calling LookupZipToDropdown properly: You would generally call LookupZipToDropdown in the
onClick of a button or in the onChange of a text box for Zip and/or Zip+4. It could conceivably also be
used in the onLoad of a <body> tag to initialize the form with values from the database. It has 2
mandatory arguments and up to 5 more optional arguments, described below.

If an optional argument is at the end, it can simply be omitted. For example:

LookupZipToDropdown ("90210", this.form.MyMenu);

But if an optional argument is in the middle (followed by other arguments), you have to pass the
JavaScript keyword “null” (without quotes) instead. For example:

LookupZipToDropdown ("90210", this.form.MyMenu, this.form.StCd,
 null, this.form.CtyNm);

SBA ColdFusion Programming Standards

Page 68 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

The arguments are as follows.

1. In order for it to be usable in the widest range of circumstances, the first argument (“pZip”) is a
string. Its format is “99999” (Zip) or “99999-9999” (Zip/Zip+4). Accepting the pZip input as a
string allows LookupZipToDropdown to be used with one form field to enter Zip/Zip+4 together,
to 2 separate form fields, or even with a value returned from the database.

2. The dropdown menu (<select> form element) that will receive the output (<option> tags) is the
second argument (“pEltDropdown”). The “Elt” part of its name in the formal arguments list
reflects the fact that it is a form element reference. Since you will generally be calling
LookupZipToDropdown in the onClick of a button or the onChange of a Zip code text field, your
will generally be able to pass this argument as this.form.((dropdownmenuname)), where the
((dropdownmenuname)) is the name attribute of the <select> tag.

3. If given, the third argument (“pEltStCd”) is a form element reference to the associated form
element for inputting state code (text box or dropdown menu, usually).

4. If given, the fourth argument (“pEltCntyCd”) is a form element reference to the associated form
element for inputting county code (hidden field, usually, since users don’t usually know county
codes so we hide that level of complexity from them).

5. If given, the fifth argument (“pEltCtyNm”) is a form element reference to the associated form
element for city name (almost always a text box).

6. If given, the sixth argument (“pEltStrNm”) is a form element reference to the associated form
element for street name (almost always a text box).

7. If given, the seventh argument (“pEltStrSfx”) is a form element reference to the associated form
element for street suffix (almost always a text box).

Arguments 3 – 7 are used only if exactly one row was found on the database for the given Zip/Zip+4. In
that case, the generated code will select the one line and propagate its values through to the form fields
named in the call. In addition, if pEltStrNm is given but pEltStrSfx is NOT given, the street name and
street suffix are concatenated (with a space between them) and both are put into the pEltStrNm form
element.

Another noteworthy feature is that the generated code will create “custom properties” in the option
elements it generates. The standard properties that HTML option elements have are selected, text and
value. But the options generated in pEltDropdown also have custom properties StCd, CntyCd, CtyNm,
StrNm and StrSfx. These can be used in an onChange JavaScript to set form fields when the user selects a
different item from the dropdown. For example:

<select name="StCdCtyNm" id="StCdCtyNm" onChange="
if (this.selectedIndex >= 0)
 {
 var sOpt = this.options[this.selectedIndex];
 SetFormEltValue(this.form.StCd, sOpt.StCd);
 SetFormEltValue(this.form.IMUserCtyNm, sOpt.CtyNm);
 If ((sOpt.StrNm.length + sOpt.StrSfx.length) == 0)
 SetFormEltValue(this.form.IMUserStr1Txt,'');
 else
 SetFormEltValue(this.form.IMUserStr1Txt,
 sOpt.StrNm + ' ' + sOpt.StrSfx);
 }
">

(This example uses SetFormEltValue because it’s independent of form element type. See 4.6.20.)

SBA ColdFusion Programming Standards

Page 69 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.4.2 dsp_LookupZipToDropdown.ajax.cfm

This routine was created in response to a need to do the same thing as dsp_LookupZipToDropdown, but
where the calling page is not necessarily using SBA look-and-feel, or maybe not even ColdFusion. This
callback must be on a ColdFusion server, of course, but the page that uses it can actually be a plain
HTML file that doesn’t use frames at all.

It uses a new technology called AJAX (Asynchronous JavaScript And XML). It uses all the same inputs
and outputs as the non-AJAX version (dsp_LookupZipToDropdown.cfm), just discussed. In fact, it was
written to be identical except for the underlying technology. There is only one mandatory difference in
how you use it, namely, what JavaScripts you use:

Instead of:

<script src="/library/javascripts/LookupZipToDropdown.js"></script>

you must use:

<script src="/library/javascripts/ajax/GetXMLHttpRequest.js"></script>
<script src="/library/javascripts/ajax/LookupZipToDropdown.ajax.js"></script>

All of our AJAX implementations will have the restriction that GetXMLHttpRequest.js must be included.
Note that they reside in the ajax subdirectory of /library/javascripts, and that ajax is redundantly added to
the name of the AJAX JavaScript (to avoid accidentally deleting the non-AJAX version if they ever reside
in the same directory someday).

This routine can be used synchronously or asynchronously. Typically you would use it synchronously
when initially loading a page, particularly if there’s more than one call. Otherwise, the second call would
be made immediately, before the first call had a chance to finish.

<script>
<!--
function DoThisOnLoad()
{
gLookupZipToDropdownAsyncly = false;
with (document.forms[0])
 {
 LookupZipToDropdown(MailAddrZip.value, MailAddrDropdown);
 LookupZipToDropdown(PhysAddrZip.value, PhysAddrDropdown);
 }
}
// -->
</script>

However, once the page is fully loaded, and the user makes a change to the zip code, it can be called
asynchronously:

<input type="Text" name="MailAddrZip" onChange="
gLookupZipToDropdownAsyncly = true;
LookupZipToDropdown(this.value, this.form.MailAddrDropdown);
">

The JavaScript variable gLookupZipToDropdownAsyncly is defaulted to true (asynchronously), so you
only have to worry about it if you need to do a synchronous call.

SBA ColdFusion Programming Standards

Page 70 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.4.3 dsp_LookupNAICSDescTxt.ajax.cfm

This routine was created in response to a specific need to return the NAICSDescTxt (description)
associated with a given NAICSCd. It also uses AJAX. Unlike dsp_LookupZipToDropdown.ajax.cfm,
however, it is always called synchronously. The reason is, the function itself actually returns the
description.

Preparing to use it:

<script src="/library/javascripts/ajax/GetXMLHttpRequest.js"></script>
<script src="/library/javascripts/ajax/LookupNAICSDescTxt.ajax.js"></script>

Using it:

<input type="Text" name="NAICSCd" onChange="
if (!EditMask('NAICS Code', this.value, '9', 1, 6, 6))
 {
 this.focus();
 return false;
 }
this.form.DescTxt.value = LookupNAICSDescTxt(this.value);
return true;
">

The LookupNAICSDescTxt JavaScript optionally takes a second argument, the NAICS year. If given and
it’s a 4 digit number, it will participate in the search for the description. Otherwise, the first description
found will be used. If a NAICS code exists in multiple years, its descriptions will probably be the same,
but not necessarily. To be absolutely sure you get a particular NAICS year’s description, use the year
argument:

<input type="Text" name="NAICSCd" onChange="
if (!EditMask('NAICS Code', this.value, '9', 1, 6, 6))
 {
 this.focus();
 return false;
 }
this.form.DescTxt.value = LookupNAICSDescTxt(this.value, 2002);
return true;
">

SBA ColdFusion Programming Standards

Page 71 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.4.4 get_ArrayUserRoles.cfm

Occasionally, a user who’s logged into GLS on an SBA server has to be transferred to another server
that’s outside the SBA domain. An example is the 8(a)/SDB application. In this case, there isn’t any hole
in the firewall which would allow the external application to call Jaguar and authenticate the user.

Another situation is where the user authenticated using the Federal E-Authentication Initiative and the
SBA has been mandated (by OMB and GSA) to trust that authentication.

In situations such as these, it may be necessary to do a callback to the server on which the user is logged
in and retrieve “ArrayUserRoles” (the array of systems, roles and privileges to which the user is entitled
to access). It complicates matters that our externally visible servers that require logging in are load-
leveled using BIG-IP. So you don’t necessarily know which server to do the callback to. This is why it
was necessary to create get_ArrayUserRoles.cfm. It handles the problems caused by our having multiple
servers with the same name.

To avoid conflicts with CFID and CFTOKEN on the remote server you’re on, GLS may pass you these
values as A and B on the URL, for example. These must be translated back into CFID and CFTOKEN on
the call to get_ArrayUserRoles. Example code:

<cfinclude template="/library/udf/bld_ListToArrayUDFs.cfm">
...
<cfif TestProdInd IS "T">
 <cfset PrevServer = "enile">
<cfelse>
 <cfset PrevServer = "eweb">
</cfif>
<cfset PrevServer = "https://#PrevServer#.sba.gov/library"
 & "/callbacks/get_ArrayUserRoles.cfm"
 & "?CFID=#URL.A#&CFTOKEN=#URL.B#">
<cfhttp method="GET" url="#PrevServer#" ... >
<cfset ListUserRoles = Trim(cfhttp.fileContent)>
<cfif Left(ListUserRoles, 10) IS NOT "Call error">
 <cfset ArrayUserRoles = ListToArray2D
 (ListUserRoles, Chr(10), Chr(9), "null")>
</cfif>

The initial cfinclude is to define the ListToArray2D function, which makes it easy to convert the output of
the callback into an array. If the call did not succeed, the data returned will begin with “Call error”, as
shown in the final cfif. The other things you would usually do (cftry/cfcatch, performance logging, etc)
are not shown, so as to keep the example brief.

SBA ColdFusion Programming Standards

Page 72 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.4.5 get_GLSSession.cfm

In actual practice, the previous callback routine, get_ArrayUserRoles, has proven to be not all we needed
it to be. For this reason, a newer and improved version exists called get_GLSSession.cfm. Unline
get_ArrayUserRoles, it returns EVERYTHING associated with the user’s GLS Session in WDDX format.

Usage is very similar to get_ArrayUserRoles (the major differences are highlighted in bold):

<cfif TestProdInd IS "T">
 <cfset PrevServer = "enile">
<cfelse>
 <cfset PrevServer = "eweb">
</cfif>
<cfset PrevServer = "https://#PrevServer#.sba.gov/library"
 & "/callbacks/get_GLSSession.cfm"
 & "?CFID=#URL.A#&CFTOKEN=#URL.B#">
<cfhttp method="GET" url="#PrevServer#" ... >
<cfset XMLFromOtherServer = Trim(cfhttp.fileContent)>
<cfif Left(ListUserRoles, 10) IS NOT "Call error">
 <cfwddx action="WDDX2CFML"
 input="#Variables.XMLFromOtherServer#"
 output="Variables.GLS">
</cfif>

After doing this, Variables.GLS will be a structure that contains all of the Session scope variables that
were created by GLS. Other Session scope variables, created for subsystems of GLS, such as
Session.ProNet or Session.HubZone, are not needed on servers other than the ones on which they reside.
So they will NOT be part of Variables.GLS. Only the Session scope data created by GLS will be in
Variables.GLS.

You will normally never have to call this routine. Our new Distributed GLS technology will call it for you
if your application resides on a server other than the login server. So this documentation is primarily for
the benefit of those who will be maintaining the files associated with Distributed GLS.

SBA ColdFusion Programming Standards

Page 73 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.4.6 Future Callbacks

Numerous server callbacks have been written for the ELend application. Over time, they will be
generalized and made available to all applications in the /library/callbacks directory. When that happens,
they will be documented here.

SBA ColdFusion Programming Standards

Page 74 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.5 Standard CFIncludes

4.5.1 bld_ServerCachedQueries.cfm

Certain queries, especially those in the sbaref database, are common enough (and small enough) to be
worth caching in memory. To make them available to all applications, not just those where the user must
log in, we cache them in the Server scope.

To make sure that they’re all defined before you try to reference them, do the following:

<cfinclude template="/library/cfincludes/bld_ServerCachedQueries.cfm">

This cfinclude uses the public_sbaref datasource, which, in turn, uses the sbaselect login to read sbaref.
It won’t work correctly if you include it within a cftransaction that uses any other datasource or login.
Therefore, this cfinclude should be done near the top of your CFM file, among the initializations.

The cfinclude function ensures that the cached queries are defined. It doesn’t actually retrieve them into
the Variables scope, because it doesn’t know which ones you need. That’s why it was called a “build”
routine (prefixed by “bld_”), not a “get” routine (prefixed by “get_”).

At the time this document was created, the list of server cached queries was/is as follows:

Server.Scq.ActvBusAgeCdTbl
Server.Scq.ActvBusTypTbl
Server.Scq.ActvCalndrPrdTbl
Server.Scq.ActvCitznshipCdTbl
Server.Scq.ActvCohortCdTbl
Server.Scq.ActvEconDevObjctCdTbl
Server.Scq.ActvIMCntryCdTbl
Server.Scq.ActvIMCrdtScorSourcTblBus
Server.Scq.ActvIMCrdtScorSourcTblPer
Server.Scq.ActvIMEPCOperCdTbl
Server.Scq.ActvEthnicCdTbl
Server.Scq.ActvGndrTbl
Server.Scq.ActvGndrMFCdTbl
Server.Scq.ActvInjctnTypCdTbl
Server.Scq.ActvLoanCollatTypCdTbl
Server.Scq.ActvLoanCollatValSourcTbl
Server.Scq.ActvLoanCrdtUnavRsnCdTbl
Server.Scq.ActvLoanFinanclStmtSourcTbl
Server.Scq.ActvLoanMFDisastrTypTbl
Server.Scq.ActvLoanMFPrcsMthdTypTbl
Server.Scq.ActvLoanPartLendrTypTbl
Server.Scq.ActvLoanPckgSourcTypTbl
Server.Scq.ActvLoanPrevFinanStatTbl
Server.Scq.ActvLoanProcdTypTbl
Server.Scq.ActvLoanStatCdTbl
Server.Scq.ActvMfSubPrgrmCdTbl
Server.Scq.ActvPrcsMthdTbl
Server.Scq.ActvPrgrmTbl
Server.Scq.ActvPrgrmValidTbl

SBA ColdFusion Programming Standards

Page 75 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

Server.Scq.ActvRaceCdTbl
Server.Scq.ActvSpcPurpsLoanTbl
Server.Scq.ActvStatCdTbl
Server.Scq.ActvStTbl
Server.Scq.ActvVetTbl

After calling bld_ServerCachedQueries, you can do the following to get the current list:

<cfoutput>#Variables.ScqAvailableResultSetNames#</cfoutput>

This list can vary on a server-by-server basis. For example, on a server that doesn’t contain Electronic
Lending, most of the queries with “Loan” or “PrcsMthd” in their names would be unnecessary. This
capability is not currently being used, but it is likely that it eventually will.

The “Scq” part of the name is short for “Server-Cached Queries”. It’s the name of the structure containing
the cached queries. The “Actv” part of the name comes from the SBA database standard abbreviation for
“Active”. It means that, at the time the query was built, it was filtered, so all rows in the query are active.
That’s why they don’t contain “StrtDt” and “EndDt” (or “ActvInactInd”) columns. But there may
someday be a need to cache all rows of a definition table, even the inactive ones. When and if that ever
occurs, additional queries can be defined, such as AllPrcsMthdTbl, and the different prefix will allow
existing apps that use ActvPrcsMthdTbl to remain unaffected.

If ColdFusion Server crashes, and your page happens to be the first page that includes it,
bld_ServerCachedQueries will actually do the database calls to build the server cached queries. To keep
the exclusive lock of the Server scope as brief as possible, everything that CAN be done outside the lock
IS done outside the lock. In this one (rare) situation, the variables will be defined in the Variables scope
as well as the Server scope.

You yourself don’t have to use the names given above (unless you want to show the origin of the query).
For example, to make your code more readable, you could change the name in the Variables scope:

<cfinclude template="/library/cfincludes/bld_ServerCachedQueries.cfm">

...

<cflock scope="Server" type="ReadOnly" timeout="30">
 <cfset getStates = Server.Scq.ActvStTbl>
</cflock>
<cfloop query="getStates">
 ...
</cfloop>

Codes and descriptions will be available in these queries as their actual database names (example, “StCd”
and “StNm”) and as “code” and “description”. Use database names if you want to avoid conflicts with
other queries. Use “code” and “description” for code sharing. For example, the standard cfinclude
dsp_options.cfm (section 4.5.3) defaults to using “code” and “description” for this reason.

In the future, there may be other application-specific cached queries as well. These will likely be defined
in separate structures, such as Server.ScqEDMIS or Server.ScqELend. This will avoid naming conflicts
when the same database table name is used in 2 different databases.

SBA ColdFusion Programming Standards

Page 76 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.5.2 dsp_errmsg.cfm

Two early standard variable names used in SBA ColdFusion files were Variables.ErrMsg and
Variables.Commentary. ErrMsg would contain what went wrong (if anything) and Commentary would
contain what went right (if anything).

The purpose of this cfinclude is to display ErrMsg and Commentary in a standardized way, namely,
enclosed in an HTML box, in bold and brick red. Typically this is done by a display page in the AppData
frame of SBA look-and-feel, just after the custom tag but before the page’s actual contents:

<sbalookandfeel ... >
<cfinclude template="/library/cfincludes/dsp_errmsg.cfm">
<cfoutput>
... ((Your page here.)) ...
</cfoutput>
</sbalookandfeel>

This is described in much greater detail in 4.1.15, Form Data Recovery, including how to supplement
automatic form data recovery with ErrMsg and Commentary values built during the execution of the
action page (using put_sbalookandfeel_messages.cfm).

4.5.3 dsp_options.cfm

Given a query of codes and descriptions, plus some extra useful variable names, this cfinclude builds the
<option> tags for a drop-down menu (<select>). Only the <option> tags are generated, allowing you to
control the <select> and </select> lines by coding them manually. You can control how the <option> tags
get generated using variables in the Variables scope that begin with DspOpts (to avoid conflicts with
other variables defined in your CFM file):

DspOptsCodeName Optional (cfparam’d) “code”
DspOptsDescName Optional (cfparam’d) “description”
DspOptsQueryName MANDATORY no default
DspOptsNotSelText Optional (cfparam’d) “Not Yet Selected”
DspOptsSelList Optional (cfparam’d) “” (= don’t use this feature)
DspOptsShowCode Optional (cfparam’d) “No” (= don’t use this feature)
DspOptsSkipList Optional (cfparam’d) “” (= don’t use this feature)
DspOptsTabs Optional (cfparam’d) “” (= don’t use this feature)

DspOptsCodeName: Column name of the query that contains the codes. The codes will go into the option
tag’s value attribute, causing them to be what’s returned to the server when the form is submitted.

DspOptsDescName: Column name of the query that contains the descriptions. The descriptions will go
between <option> and </option>, causing them to be visible to the user.

DspOptsQueryName: Name of the query. If you use a server cached query (described above, 4.5.1), do
NOT give this as “Server.QueryName”. To do so will cause implicit cflocking, and implicit cflocks are
exclusive locks. Instead, do an explicit readonly cflock, copy the server cached query into the Variables
scope and specify the Variables scope query name instead.

SBA ColdFusion Programming Standards

Page 77 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

DspOptsNotSelText: This is what you want to have displayed as the very first <option value=""> option.
Usually “Not Yet Selected” is fine, but sometimes the end user will insist upon “(all countries)”, as Trade
Mission Online did, or “(any state)”, as PRO-Net did, for example. You can also set DspOptsNotSelText
to “Suppress” if you don’t want an <option value=""> line generated.

DspOptsSelList: This is a comma-delimited list of codes that should have the “selected” attribute. If the
drop-down allows the user to select multiple values (what JavaScript calls a “select-multiple”) it can have
more than one value. Otherwise, if only one value can be selected, this list must NOT contain more than
one element. For example, “DC,MD,VA” would be the DspOptsSelList for DC, Maryland and Virginia.

DspOptsShowCode: Sometimes, end users want the codes to appear with the descriptions, as in this
example from the Dynamic Small Business Search (= “DSBS” = “PRO-Net”):

Setting DspOptsShowCode to “Yes” will cause dsp_options to prepend the code before the description,
separated by a hyphen, as in shown above. Note: This feature does not affect the display order.

DspOptsSkipList: If you’re using a server cached query (see 4.5.1, above), you don’t have the ability to
exclude certain rows from the result set using the where clause. This is a comma-delimited list to allow
you to do so programmatically. In the DSBS example just given, you could exclude the APO/FPO lines
by setting DspOptsSkipList to “AA,AE,AP”.

DspOptsTabs: If you like to keep your output HTML tidy, as if coded by hand, you may want to control
the number of tabs before each line. This is not a number of tabs, but an actual string of tabs, which is
more flexible. (It allows you to use spaces instead, if necessary.) So if you wanted to indent 3 tabs deep,
you would set DspOptsTabs to Chr(9)&Chr(9)&Chr(9), or to RepeatString(Chr(9), 3), whichever you
consider more readable.

In the future, there will be more server cached queries and more utility cfincludes to generate HTML from
queries. For example, there could be dsp_checkboxes or dsp_radios routines for situations where those
formats are more appropriate.

SBA ColdFusion Programming Standards

Page 78 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.5.4 dsp_sbalookandfeel_variables.cfm
4.5.5 get_actual_server_name.cfm

The logical names of our servers are shared by multiple actual servers through a process called load
leveling. Specifically, here are our current development, test and production Web server environments:

Development (danube.sba.gov):
• danube.sba.gov

Test (enile.sba.gov):

• rouge.sba.gov
• yukon.sba.gov

Production (eweb.sba.gov):

• riogrande.sba.gov
• wocs41.sba.gov

If you request a page on enile.sba.gov, the request might be handled by rouge.sba.gov or yukon.sba.gov.
A load leveling hardware box, called BIG-IP, makes the decision as to which actual server to use.

Sometimes, however, you may need to know which actual server is servicing the request. To do this, do
the following:

<cfinclude template="/library/cfincludes/get_actual_server_name.cfm">

After doing this, you will have 2 new SBA look-and-feel (“Slaf”) variables defined:

• Request.SlafServerName for example, yukon
• Request.SlafLocalHost for example, yukon.sba.gov

The former is more useful in testing, because the names are shorter and don’t include “.sba.gov”. The
second one is more useful in URLs, because you don’t have to tack on “.sba.gov”.

If you are interested in identifying the environment (development, test or production), you may take
advantage of another variable:

• Request.SlafDevTestProd "Dev" for development, "Test" for test, "Prod" for production or
 nullstring for unknown server.

4.5.6 get_sbalookandfeel_variables.cfm
4.5.7 inc_starttickcount.cfm
4.5.8 inc_totaltickcount.cfm
4.5.9 OnRequestEnd.cfm

This include is related to logging. See 4.3.7.2.

In addition to doing end-of-request logging on normal completion of a page, it also turns off ColdFusion
debug output unless specifically requested with Variables.Debug or URL.Debug being set to “Yes”. The
reason for this is, debug output is almost never needed on normal completion of a page. Failure to turn off
debug output in development and test results in pages that cannot be adequately evaluated as to their
appearance before releasing them to test. Debug output will still occur if an error happens or if requested.

SBA ColdFusion Programming Standards

Page 79 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.5.10 put_sbalookandfeel_messages.cfm
4.5.11 put_sbalookandfeel_variables.cfm

SBA ColdFusion Programming Standards

Page 80 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.6 Standard JavaScripts

We have a standard set of JavaScripts that are used for data validation and other uses on the browser. All
were written to be cross-browser compatible, so that they can be used by the general public, who may
have Netscape, Macs, etc.

4.6.1 Use onChange, Not onBlur

If you use onBlur to trigger client-side data validation, it’s possible to get entangled in an infinite loop in
which the user can’t correct the form element because the JavaScript alert triggers another onBlur. The
only way out of the infinite loop is to Control-Alt-Delete (PC) or Command-Opt-Escape (Mac) and kill
the browser. In other words, onBlur can be so strict as to make it unusable with alerts. You need to loosen
things up a bit so that the user can continue to work, entering data into other form elements.

Unfortunately, using onChange allows the user to tab out of the element after the error occurs. Because no
change occurred, the onChange is not triggered at that time. This leaves the element containing the bad
data that resulted in the error. It’s possible that the user will never go back to the form element that’s in
error and correct it, which will result in a wasted hit on the server. That’s where the next section (4.6.2)
can help.

4.6.2 Code for Reuse in the Form’s onSubmit

EditMask is the central routine for most of the other data validation routines. It returns true if the form
element’s value conforms to the edit mask, or it returns false if the value is in error (does not conform to
the edit mask). So the traditional way to call EditMask used to be using exclamation mark (“!”), which
means “not” in JavaScript, to detect an error and return the user to the same form element with the focus()
method. Example (old way, do not use):

<input type="Text" name="SSN" ... onChange="
if (!EditMask('Social Security',this.value,'999-99-9999',1,11,11))
 this.focus();
">

Translation: This form element is mandatory (the 1 before the two 11’s). It must be a minimum of 11
characters long (the first 11) and a maximum of 11 characters long (the second 11). It must adhere to the
edit mask pattern of “999-99-9999”. If any of these characteristics is not true, pop up an error message in
which the form element is referred to as “Social Security”, and EditMask returns false. Because of the
exclamation mark before EditMask, the if condition means “if EditMask fails”, so this.focus() will be
done, returning the browser to the field for the user to correct the mistake.

As mentioned above, the user can simply tab out of the form element at that point and leave bad data in
the form element. Therefore, the preferred way to code is for reuse in the form’s onSubmit trigger, so as
to prevent the wasted hit on the server.

SBA ColdFusion Programming Standards

Page 81 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

Code for Reuse in the Form’s onSubmit, continued:

The following is an example of how you can allow the user to continue working (using onChange, not
onBlur), but reuse the onChange in the form’s onSubmit. This allows you to remind the user to change
the element in error and avoid the wasted hit on the server:

<form ... onSubmit="
if (!this.SSN.onchange()) return false;
if (!this.ZipCd.onchange()) return false;
// etc.
return true;
">
...
<input type="Text" name="SSN" ... onChange="
if (EditMask('Social Security',this.value,'999-99-9999',1,11,11))
 return true;
else
 {
 this.focus();
 return false;
 }
">

Note that, in this example, the exclamation mark is no longer needed, because both branches of the if are
accounted for by means of the else condition. Instead, the onChange returns true if EditMask returned
true, and it resets the focus and returns false if EditMask returned false. This is what allows it to be reused
in the form’s onSubmit trigger. Here’s a more condensed version of the same technique:

<input type="Text" name="SSN" ... onChange="
if (EditMask('Social Security',this.value,'999-99-9999',1,11,11))
 return true;// control will not continue, so no need for 'else'
this.focus();
return false;
">

Note that, in the onSubmit method, the JavaScript name of the onChange methods are in lower case. This
spelling is required, because that’s how JavaScript creates it. In the form element, the onChange is on the
left hand side of the equals sign, which means that it’s an HTML attribute. As with all HTML attributes,
its spelling there is case insensitive. It doesn’t matter whether you say

<input type="Text" name="SSN" ... onChange="
or

<input type="Text" name="SSN" ... OnChAnGe="
or

<input type="Text" name="SSN" ... ONCHANGE="

But when referencing the method defined by that attribute, you must always use lower case.

That’s what the onSubmit of the form does. The most useful capability of the onSumbit is its ability to
prevent the submission of the form by returning false. In this way, the onchange() method of the SSN,
ZipCd and other form elements are reused, and the wasted hit on the server is avoided if any was
previously left containing bad data by the user.

SBA ColdFusion Programming Standards

Page 82 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

Most of the following are “Under construction.” Removing those comments to save paper printing:

4.6.3 EditDate

EditDate uses EditMask. If you don’t know how to use EditMask, you should read it first (below).

4.6.4 EditDateNonFuture

EditDateNonFuture uses EditDate. If you don’t know how to use EditDate, you should read it first
(above).

4.6.5 EditList

EditList uses EditMask. If you don’t know how to use EditMask, you should read it first (below).

4.6.6 EditMask
4.6.7 EditPronetUserid
4.6.8 EditState

EditState is unique among our “Edit” JavaScripts, in that it validates an object reference to a form
element, not a value. This is because it forces the state code the user entered to upper case. Example
usage:

<input type="Text" name="State" ... onChange="
if (EditState('State', this, 1))
 return true;// control will not continue, so no need for 'else'
this.focus();
return false;
">

In all of our other “Edit” routines, you would pass this.value, not this. But EditState will use the object
reference to convert the input to upper case. (This conversion to upper case also decreases the number of
state codes that EditState has to test for. For example, in the case of Texas, it only has to test for “TX”,
not “TX”, “Tx”, “tX” or “tx”)

4.6.9 EditTin
4.6.10 ClearForm
4.6.11 DumpObject
4.6.12 FormSynopsis
4.6.13 GetXMLHttpRequest

This routine is required by all of our AJAX JavaScripts.

4.6.14 LookupNAICSDescTxt

This is your point of interface to the server callback that does NAICS code lookup. See 4.4.3, above.

SBA ColdFusion Programming Standards

Page 83 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

4.6.15 LookupZipToDropdown

This is your point of interface to the server callback that does Zip code lookup. See 4.4.1 and 4.4.1,
above.

4.6.16 NumToDollars

If the most recent call to EditMask was to validate a numeric value, EditMask will have set a global
variable, called gValueInCents. Its name suggests its value. If the last valid numeric value was “5.23”,
gValueInCents will contain 523. If the last valid numeric value was $12,345, it will contain 1234500.

This is a necessary evil in JavaScript, because all numbers with a decimal point are represented in double
precision floating point. Sometimes, in floating point, 2 + 2 isn’t 4. Sometimes, 2.0 + 2.0 is 3.999999999,
which confuses and upsets many of our users. To prevent these spurious representations and allow
arithmetic, particularly in the case of money, we build gValueInCents to ALWAYS be an integer value.
That’s because, in integer arithmetic, 2 + 2 is always 4.

Now suppose you want to calculate values for your users. For example, in a financial balance sheet, you
may want to roll up assets to Total Assets, roll up liabilities to Total Liabilities and calculate Net Worth.
You want to enter these values into the balance sheet, but you don’t want to enter them as integers. That’s
where NumToDollars comes in. NumToDollars takes an integer in gValueInCents format and adds in
commas and floating dollar sign. This is the format in which financial users like to see money amounts.

You don’t have to use it in roll-ups. You can even use it within a given field, so that the field’s value
presents a nice, neat appearance. Users appreciate it, because the addition of commas helps them spot
accidentally entering an extra zero, for example. Here’s an example of just such a usage:

<input type="Text" name="Salary" ... onChange="
if (EditMask('Salary',this.value,'$',1,15,15))
 {
 this.value = NumToDollars(gValueInCents);// From EditMask
 return true;
 }
this.focus();
return false;
">

Note that, if the value fails EditMask validation, gValueInCents cannot be trusted. In fact, it will probably
contain 0. So you should never trust gValueInCents unless EditMask returns true.

4.6.17 RoundTo2DecimalPlaces
4.6.18 RoundToNearest
4.6.19 RoundUpToNearest
4.6.20 SetFormEltValue

This JavaScript was written for cross-browser compatibility. Microsoft Internet Explorer (MSIE) allows
you set a form element’s value in a way that violates the JavaScript Document Object Model (DOM). For
example, suppose you have defined the following set of radio buttons:

Women-Owned Business?

SBA ColdFusion Programming Standards

Page 84 of 127 Version: 3.2.3
4. Coding Standards, Shared Code Modified: 11/06/2008

<label><input type="Radio" name="WOB" value="Y"> Yes </label>
<label><input type="Radio" name="WOB" value="N"> No </label>

MSIE will let you say the following (WHICH VIOLATES THE DOM, SO DON’T DO THIS):

formname.WOB.value = "Y"; // only works in MSIE

MSIE treats this as equivalent to clicking on the Yes radio button, which has the value “Y”. The right way
to do this is to loop through the formname.WOB array and set the checked property. For example:

for (var i = 0; i < formname.WOB.length; i++)
 if (formname.WOB[i].value == "Y")
 {
 formname.WOB[i].checked = true; // works in any browser
 break;
 }

Needless to say, it’s a lot more work to do it correctly. To make it as easy in all browsers as it is in MSIE,
we have the script SetFormEltValue. For example:

SetFormEltValue (formname.WOB, "Y");

4.7 Standard UDFs and Other Utilities
4.7.1 bld_GetCFDirectoryActionList.cfm
4.7.2 bld_GetCFFileActionRead.cfm
4.7.3 bld_JaguarUDFs.cfm
4.7.4 bld_ListToArrayAllowingNulls.cfm
4.7.5 bld_ProcessDirectory.cfm
4.7.6 val_char.cfm
4.7.7 val_date.cfm
4.7.8 val_email.cfm
4.7.9 val_num.cfm
4.7.10 val_phone.cfm
4.7.11 val_state.cfm
4.7.12 val_taxid.cfm
4.7.13 val_url.cfm
4.7.14 val_zip.cfm

SBA ColdFusion Programming Standards

Page 85 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5 Best Practices

The preceding were Coding Standards (mandatory). This section covers the best ways to get things done,
but which are not at the mandatory level of Coding Standards.

5.1 Improving Performance

5.1.1 Eliminate Redundancies, Share Code

When you have a need for a new page that does pretty much the same thing as an older, existing page, the
temptation is very strong to do a File > Save As … and modify the copy to do what you need the new
page to do. You have to learn to resist that temptation.

Not only do multiple copies of redundant code take up disk space, they also take up too much of a far
more precious resource, ColdFusion Page Cache space. When ColdFusion runs out of that space, it begins
throwing away the compiled versions of pages to make room for the compiled versions of new pages. If
this situation gets bad, the performance of the entire ColdFusion Server is adversely affected… Every
application, even those that were designed cleanly and implemented efficiently, will slow down because
one poorly designed, poorly implemented application is wasting the page cache.

If 2 pages do essentially the same thing, try to find a way to share that code they have in common, so that
only one file is used, or so that a core set of common code is in a shared file. Then ColdFusion Server
doesn’t need to keep 2 versions of the same file in memory.

The following is an example of how to share the code of the graphics and text-only versions of the same
file. Instead of doing a File > Save As on dsp_search.cfm to create a new dsp_search.textonly.cfm file
that’s just as big (but doesn’t have any graphics), almost all code is shared in dsp_search.cfm:

File dsp_search.textonly.cfm:

<cfset Variables.TextOnly = “Yes”>
<cfinclude template=”dsp_search.cfm”>

File dsp_search.cfm:

<cfparam name=”Variables.TextOnly” default=”No”>
<cf_sbalookandfeel TextOnly=”#Variables.TextOnly#” . . .>
. . .
<cfif Variables.TextOnly>

Graphics Version
<cfelse>

Text Only Version
</cfif>
. . .
</cf_sbalookandfeel>

This example assumes you have some reason not to use 4.1.14 Automatic Text Only and Screen Resizing,
above. For example, if you aren’t using SessionManagement, this technique is ideal.

SBA ColdFusion Programming Standards

Page 86 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.1.2 Eliminate Redundancies, Share Code, part 2

Another example of eliminating redundancy and sharing code is to use the actual standard libraries, rather
than your own copy of them. Not long after the Stored Procedure Call File Generator was created to
generate SPC files for use with CFINCLUDE, other programmers created their own versions of the
generator that generated custom tags or ColdFusion Components (CFCs). Not only was this a waste of
effort and disk space, it was also an enormous waste of ColdFusion Page Cache.

All of those systems will have to be reprogrammed to use SPC files to be in compliance with the Shared
Code chapter of this Standards document. Be mindful that what is not a standard right now might become
a standard in the future.

Even when you have a need for an application-specific version of an otherwise standard routine, share it.
Don’t make multiple copies of it and use it in several different locations. Not only does that make it hard
to update all the copies when you need to make a change, it also wastes the page cache.

5.1.3 Limit Record Set Size

To prevent server performance degradation due to large searches, limit the number of rows returned in a
record set to a reasonable number as determined by the management of your application. In a CFQUERY,
this is accomplished by the MAXROWS attribute.

An alternative, where the search criteria are based on user inputs, is to “SELECT COUNT(*)” with the
same FROM and WHERE clauses as the intended search. Then, if the count doesn’t exceed the
management determined maximum, perform the intended search. This method can be used to give the
user an idea of how unrestricted the search would have been by displaying the count. This encourages a
more restrictive search. (Example limits: The ColdFusion version of PRO-Net restricts searches to 1500
rows. In previous versions, it was 5,000, unless the searcher is at the SBA, in which case the limit was
25,000.)

Where the result set is inherently limited by there being only a small amount of data (such as getting all
state codes), there is no requirement to limit the search.

5.1.4 Caching Result Sets

If a search engine pages its results (First 25 Matches, Next 25 Matches, etc), the same SQL is going to be
resubmitted over and over again. That’s a situation in which it makes sense to cache result sets with the
CACHEDWITHIN attribute of CFQUERY.

As compared to caching the result set in the session scope, CACHEDWITHIN offers a finer level of
control. Even though the session won’t time out for an hour, you can timeout the cached result set at 5 or
10 minutes, for example.

5.1.5 Explicitly Scope Variables

In general, you should give the explicit scope of the variable you’re defining or using. That is, say
Variables.GLSAuthorized or Session.GLSAuthorized, not simply GLSAuthorized. This prevents
ColdFusion from searching every scope until it finds the definition (for better performance) and makes
the context explicit (for more reliable and predictable behavior).

SBA ColdFusion Programming Standards

Page 87 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.2 Code for Ease of Maintenance

5.2.1 Parameterize Directory Names and Paths

As described above, all of our Shared Code directories are in the same location on all SBA ColdFusion
Servers. But hard coding those paths makes it difficult to respond to changing maintenance needs.
Instead, you can ease your maintenance chores by parameterizing directory names and paths, typically in
Application.cfm. The following example has “Variables.” removed to fit on this page better:

<cfset AppDir = "/myapp">
<cfset AppImagesDir = AppDir & "/images">
<cfset AppIncludesDir = AppDir & "/cfincludes">
<cfset AppJavascriptDir = AppDir & "/javascripts">
<cfset AppMainNavJSDir = AppJavascriptDir & "/sbalookandfeel">
<cfset AppSearchDir = AppDir & "/public">
<cfset AppUpdateDir = AppDir & "/sbaonly">
<cfset LibDir = "/library">
<cfset LibImagesDir = LibDir & "/images">
<cfset LibIncludesDir = LibDir & "/cfincludes">
<cfset LibJavascriptDir = LibDir & "/javascripts">
<cfset LoginDir = "/gls">
<cfset LoginURL = LoginDir & "/dsp_login.cfm">

To be effective, these parameterized directory names and paths have to be used everywhere, of course:

<cflocation url="#LoginURL#">
<script src="#SysJavascriptDir#/EditMask.js"></script>
<cf_sbalookandfeel MainNavJSURL = "#AppMainNavJSDir#" ... >

Two examples of how this can greatly ease maintenance:

At one point in time, Electronic Lending was called “LMS”. Its application directory (AppDir in the
example above) was /lms. Later, it was decided that many other SBA applications could benefit from the
LMS login screens and role management. So the General Login System (GLS) was split out of LMS and
given its own directory, /gls. Because LMS had been written using the technique above (not using the
same names, but the same technique), all that was necessary to adapt all GLS code to its new top level
directory was to change the parameter for the application (AppDir in the example above).

For various reasons, the name of Electronic Lending itself kept changing. At one point it was called
“EAM” (the “Electronic Application Module”), “LOS” (the “Loan Origination System”) and eventually,
ELend. But just as before, when the top level directory name was changed to /elend, all that was
necessary was to change one parameter, and all code automatically adapted to the change.

Although there are no plans to move /library and other shared code, coding in this manner allows us to do
so, should the need ever arise.

SBA ColdFusion Programming Standards

Page 88 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.2.2 Indent Properly

Even though we ourselves wrote a passage of code, we all tend to forget exactly what it does while we’re
working on other projects. When we return, we have to figure out our own code as if it were written by
someone else. We will have to return to our old code, because the last person who worked on it is the first
one called when there’s a problem or a modification request. So, although you may THINK that tidying
up your code is just to make things easy on “the next guy”, keep your code readable to make things easy
on YOURSELF.

Indenting your code properly allows you to visually see the scope of a <cfif> or <cftransaction> during
maintenance and allows you to see where new code belongs.

To minimize horizontal scrolling in text editors, note that you don’t always have to indent. For example,
<cfcase> has no meaning except within a <cfswitch>. So the scope of the <cfswitch> is very obvious in
the following, even though the <cfcase> statements aren’t indented:

<cfif IsDefined("Form.FieldNames")>
 <cfswitch expression="Form.StCd">
 <cfcase value="DC,MD,VA"><cfset Local = "Yes"></cfcase>
 <cfdefaultcase> <cfset Local = "No"> </cfdefaultcase>
 </cfswitch>
 <cfif Local>
 ...
 </cfif>
</cfif>

The goal in indenting code is to make it easy to determine the scope of paired tags. To the extent that
paired tag scope remains obvious, your indenting is good.

5.2.3 Line Up Code to Make It Easier to Read and Spot Errors

In the parameterized directory names of section 5.2.1, note that the “=” and “&” signs are lined up. That
was on purpose. Compare this:

<cfset AppImagesDir = AppDir & "/images">
<cfset AppIncludesDir = AppDiv & "/cfincludes">
<cfset AppJavascriptDir = AppDir & "/javascripts">

to this:
<cfset AppImagesDir = AppDir & "/images">
<cfset AppIncludesDir = AppDiv & "/cfincludes">
<cfset AppJavascriptDir = AppDir & "/javascripts">

In which example is it easier to see where AppDir is misspelled? If AppDiv is also defined (so that you
don’t get a crash), locating the error may take time. Lining up code helps.

SBA ColdFusion Programming Standards

Page 89 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.2.4 Define Configuration Parameters at Top of Page

Rather than scouring a file to ascertain where a configuration parameter is being set, get into the habit of
putting all configuration parameters at top of page, just below the mandatory program description
(comment header).

They don’t have to all be simple <cfset> tags. Sometimes they can be calculated, as in the case of
MaxRows or UploadDir in the following example. But if they’re configuration parameters, they belong
up top:

<!---
AUTHOR: Marco Ortiz
DATE: 08/26/2001
... (rest of comment header, as described in section 3.3.5.)
--->

<!--- Configuration Parameters --->

<cfset CacheTimeSpan = CreateTimeSpan(0,0,5,0)><!--- 5 minutes --->
<cfif Left(CGI.Remote_Addr, 8) IS "165.110."><!--- SBA User --->
 <cfset MaxRows = 25000><!--- We get to see more rows. --->
<cfelse>
 <cfset MaxRows = 1500>
</cfif>
<cfset RowsPerPage = 25>
<cfset UploadDir = Variables.AppUploadDir & "/xmlfiles">
<cfset UploadMaxSize = 1000000><!--- bytes --->

5.2.5 Make LOTS of Things Configurable

Anything you keep repeating in the code should probably be a configuration parameter. For example,
suppose that, to avoid being right up against the left edge of the AppNav region in SBA look-and-feel,
you’ve coded a lot of non-breaking spaces () to indent your hotlinks, like so:

 <a ...>Print Application

 <a ...>Credit Report
 ... (etc)

That’s tedious to do and tedious to change. It’s much easier to define a configuration parameter:

<cfset AppNavIndent = " ">

and use the parameter in your code instead, allowing easy change of indention:

#AppNavIndent#<a ...>Print Application

#AppNavIndent#<a ...>Credit Report
 ... (etc)

SBA ColdFusion Programming Standards

Page 90 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.2.6 Document Your Code: Use “Hints”

The hint attribute of CFFUNCTION and CFARGUMENT tags can be retrieved by the user of the
component / Web Service. So you can use hint attribute to document a function and its arguments to the
users. This gets you out of the business of writing interface documentation. Using hints makes
documentation automatically available to those who need it most.

5.2.7 Document Your Code: Use Comments for Actual Comments

You don’t have to put your initials and the date in a comment on every line you change. If the comment
header says that you added special code for tax-exempt Native American owned businesses, and there’s
only one place in the file that has tax-exempt Native American owned business coding, that pretty much
speaks for itself.

Comments make code more maintainable when they impart knowledge about what’s going on, as in the
following example:

<!---
If we only scan through the XML and apply validation rules to the
XML fields we see, we won’t detect missing mandatory fields. So
another pass is required, in which we scan through the validation
rules looking for mandatory fields for which there is no XML field.
In the process, set missing optional fields to nullstring, so that
they’ll be defined when we call the SPC files:
--->

Without even seeing the code that follows, you already know what it’s trying to do. This is the best kind
of comment: the kind that contains an actual comment, the kind that makes code easy to maintain.

5.2.8 Document Your Code: Use Descriptive Datanames

Under construction.

SBA ColdFusion Programming Standards

Page 91 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.3 The “Right Way To Do It”

The following are not just Best Practices. They are what works. They are included here to save all SBA
ColdFusion developers the slow learning curve that results from trial and error.

5.3.1 Use CFLOCK to Lock Server, Application, and Session Variables

ColdFusion Server is a multi-threaded web application server that can process multiple page requests at
any given time. Use CFLOCK to guarantee that multiple concurrently executing requests do not
manipulate these shared memory scopes in an inconsistent manner.

<cflock Scope="Application" TIMEOUT="30" TYPE="Exclusive">
<cfparam name="application.number" default=”1”>

</cflock>

If you don’t code a CFLOCK, newer levels of ColdFusion will implicitly lock that scope for you, but the
default lock is Exclusive. Coding your own CFLOCK allows you to use the less restrictive ReadOnly
lock.

Even when an Exclusive lock might be necessary, you may be able to avoid an Exclusive lock in a
majority of cases. See section 3.1 “Session Control (CF 4.x and 5.x)” for an example of how to use a
ReadOnly lock to determine whether an Exclusive lock is necessary.

5.3.2 Structured Query Language (SQL) in JDBC

Because CFMX uses JDBC, you have to use single quotes to delimit non-numeric literals in SQL. Also in
JDBC, NULL is not a value. So you have to say “TaxId is null”, not “TaxId = null”. Similarly, NULL
will not be found in IN or NOT IN clauses, which are implicit equality checks. So you have to say “StCd
is null or StCd not in (‘DC’,’VA’,’MD’)”.

The list of JDBC differences goes on and on. See 7.3 ColdFusion MX 6.x (and Conversion to ColdFusion
MX in General), below, for a more detailed list and workarounds.

5.3.3 Checking for Existence of CGI Variables

Don’t say <CFIF IsDefined(“CGI.xxxx”)>. To keep code from crashing on different Web servers that
support different CGI environment variables, CGI.variablename is always defined, regardless of what
“variablename” is. So instead of IsDefined(), check whether its length is greater than 0: <CFIF
Len(CGI.xxxx) GT 0>. (IsDefined doesn’t hurt anything. It just doesn’t give you what you wanted in this
case.)

SBA ColdFusion Programming Standards

Page 92 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.3.4 How to Break Out of Frames

Frames manipulation can ONLY be done on the browser. If a hotlink loads a page in a given frame,
there’s nothing the page can do in CFML to change that fact. The page WILL be loaded into that frame,
no matter what you do in CFML. Therefore, if you want to break out of frames, you must use HTML or
JavaScript to do so.

5.3.4.1 Breaking Out using HTML

Before the user ever requests the page (presses the hotlink or submits the form), the HTML can specify
the TARGET attribute to tell the browser where to load the page. The following target values are
especially useful:

 or <form target="_top" ... >
 or <form target="_blank" ... >

The first one breaks out of frames by loading the page all-by-itself in the current window. The second one
breaks out of frames by loading the page all-by-itself in a new window.

5.3.4.2 Breaking Out using JavaScript

The target attribute value can also be a frame or window name, so specifying the target attribute has many
other uses. It can be used by hotlinks in AppNav to load pages into AppData, for example, as follows:

The following, in AppNav:

Feedback
has the same effect as the following, in AppData:

Feedback

In either case, the browser has been instructed to load dsp_feedback.cfm into the AppData frame. There is
absolutely nothing that dsp_feedback.cfm can do (on the server) to keep this from happening. But once
the page is on the browser, dsp_feedback.cfm can include the following JavaScript to break out of the
AppData frame, so that it is all-by-itself in the same window:

<script language="JavaScript">
<!--

if (self != top.self)
 top.location.href = self.location.href;

// -->
</script>

5.3.4.3 Always Use the HTML Method Wherever Possible

If you know in advance that a page needs to be outside of frames, ALWAYS use target="_top" in the
HTML, even if that page has JavaScript to break out of frames. The reason is, Microsoft Internet Explorer
users will not be able to return using the Back button if JavaScript broke the page out of a frame. Instead,
MSIE returns to the frame, the page re-executes the JavaScript, and the user will be tossed back into the
same page again. To the user, it seems that the page broke the Back button (and it did). Use target="_top".

SBA ColdFusion Programming Standards

Page 93 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.3.5 How to Change the “RequestTimeout” of a Page

The maximum time for the execution of a page is called the “RequestTimeout” value, because that’s the
actual name used to set the time. The mechanism has changed from version to version of ColdFusion. The
SBA is currently running versions CF 4.5, 6.1 and 7.0 on various ColdFusion servers.

Here are the rules for setting RequestTimeout:

Under CF 4.0, 4.5 and 5.0, you pass a URL variable RequestTimeout to the page. So if you want to give
dsp_mandlebrot.cfm 5 minutes (600 seconds) to run, you would use the URL:

http://server/path/dsp_mandelbrot.cfm?RequestTimeout=600

The problem with this method is that it’s already too late to increase the timeout value once you’re inside
the page. For this reason, Macromedia created 2 new ways to increase the timeout under ColdFusion MX:

<cfset Variables.RequestTimeout = “600”>
or

<cfsetting RequestTimeout = “600”>

Both of these allowed changing the timeout from within the page itself. The first method works under
CFMX 6.0 and 6.1, but not under 7.0. The second method doesn’t work under 6.0, but works under 6.1,
7.0 and is the approved way to do it for all future versions.

You can use the Server.ColdFusion.ProductVersion list to determine what version of CF is running and
set the timeout value accordingly. The first element of the list is the major product version. So if you want
RequestTimeout on the URL to work under all levels, the following example shows how that can be
done:

<cfif IsDefined("URL.RequestTimeout")>
<cflock scope="Server" type="ReadOnly" timeout="30">

<cfset VersionList = Server.ColdFusion.ProductVersion>
</cflock>
<cfswitch expression=”#ListGetAt(VersionList,1)#”>
<cfcase value="1,2,3,4,5">

<!--- Do nothing, because RequestTimeout was set by URL. --->
</cfcase>
<cfcase value="6">

<cfset Variables.RequestTimeout = URL.RequestTimeout>
</cfcase>
<cfdefaultcase><!--- 7 or greater --->

<cfsetting RequestTimeout = URL.RequestTimeout>
</cfdefaultcase>
</cfswitch>

</cfif>

There is now a custom tag <cf_SetRequestTimeout seconds="((seconds))"> to set the RequestTimeout for
you. The example above simply serves to show how it works under a variety of ColdFusion versions.

In most cases, you don’t have to set RequestTimeout from URL.RequestTimeout, by the way. If you
cfinclude get_sbalookandfeel_variables.cfm or get_sbashared_variables.cfm, and URL.RequestTimeout is
defined, a call will be generated for you: <cf_SetRequestTimeout seconds=”#URL.RequestTimeout#”>

SBA ColdFusion Programming Standards

Page 94 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.3.6 Dynamic HTML

5.3.6.1 General Principles and Section 508 Issues

DHTML requires that JavaScript must be active. It may not be. Some users are paranoid about JavaScript
and turn it off. Some users are annoyed at advertizing pop-up windows and turn it off because their
browser doesn’t support pop-up blocking. Some users are blind and using a Web page reader that gets
messed up by JavaScript. So although 95% – 98% of all users have JavaScript on these days, that means
that there are 5% - 2% who don’t. So your pages can’t become totally non-functional if JavaScript is off.

There are other SBA documents which specify how to code for Section 508 compliance. That’s “out of
scope” for this document. This section is about how to use DHTML in a way that doesn’t conflict with
Section 508 rules.

5.3.6.2 Left-Side Navigation Trees

If you use the left-side navigation tree (<cf_sbatree> and <cf_sbatreeitem>), you are intrinsically using
DHTML. It’s a DHTML tree. If JavaScript is off, it won’t work. Therefore, if you use the left-side
navigation tree, or if your hotlinks in AppNav use JavaScript, you must provide an alternate way to
navigate through all of your pages.

The Best Practice for this is to implement “Next” and “Save/Next” logic in your pages. This is how it’s
done in Electronic Lending (ELend), the SBA Supplemental Pages of PRO-Net and many other SBA
applications.

The first part of doing this is in how you organize your left-side navigation tree. If there’s a repeating
group that’s variable in size, put the repeating group in a folder. This allows it to be collapsed when the
user doesn’t care about the group. More importantly, put the “New” page (the page that allows the user to
add a new member to the repeating group) at the end of the repeating group. This isn’t an ease of use
issue or a Section 508 issue. It’s a consistent behavior at SBA sites issue. All of our applications add on to
repeating groups at the end of the group.

The user enters at a particular page of a multi-page. Which page is up to you. Generally it’s the first page,
but there might be a better page that most users would prefer to go to first. What’s important is, the user
doesn’t have to use left-side navigation to get to the first page.

SBA ColdFusion Programming Standards

Page 95 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

From any given page that the user is seeing, “Next” and “Save/Next” should (by default) take the user to
the next page in sequence in the navigation tree.

They aren’t using the navigation tree to get to the next page, but the navigation tree still functions as a
guide. That is, it’s your documentation as to which page you mean when you say “Next”. This is so
intuitive, it generally requires no explanation. Users will generally adapt to this intuitive behavior without
even realizing it.

Note that you go to the next page “by default”. It may be necessary to return to the same page if the user
enters bad data. In the example above, if the user entered “two” instead of “2” as the Display Order, it
would be impossible to save the data as entered. In that case, you would return to the same page with an
error message, to give the user the opportunity to correct the mistake.

Last but not least, when you’re on the last page of the navigation tree, “Next” and “Save/Next” take you
back up to the top of the navigation tree. This is what makes the set of pages Section 508 compliant. It
means, no matter where you start in the navigation tree, you can always get to every page (eventually) by
repeatedly hitting “Next” and/or “Save/Next”.

TESTING:

• Start at the default first page and begin pressing the “Next” button repeatedly.
• Verify that you always get to the next page in the navigation tree, never skipping a page, never

staying on the same page.
• Verify that, at the bottom page of the navigation tree, “Next” takes you to the top page of the tree.
• When you reach the page where you started, you’ve proven that you don’t need JavaScript to get

to every page.

SBA ColdFusion Programming Standards

Page 96 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.3.6.3 A Trick to Make Sure the Left-Side Navigation Tree Matches “Save/Next”

One way to make sure that your Left-Side Navigation Tree matches your “Next” and “Save/Next” logic is
to generate both from a common source. Here’s a made-up example:

<cfset PageOrder = "Welcome,CompanyInfo,AffiliateFolder,"
 & "Affiliate1,Affiliate2,AffiliateNew,ContactInfo,"
 & "PrincipalFolder,Principal1,PrincipalNew,Done">

In this example, you’ve established a naming convention that, if the name ends in “Folder”, you’re going
to generate a folder in the left-side navigation tree. After a folder, every item that begins with the same
thing as the folder will be a subitem of the folder. So Affiliate1, Affiliate2 and AffiliateNew will be
subitems of the Affiliate folder, but ContactInfo doesn’t begin with “Affiliate”, so it moves up a level in
the navigation tree.

In the “Next” and “Save/Next” logic, you simply do a ListFind on the current page, add one to its value
and that’s the next page in sequence, the page you go to by default.

Of course, you can’t always do this. In Electronic Lending (ELend), for example, any principal can be an
owner of any borrower, guarantor or affiliate. The structure of the navigation tree gets quite complex and
can’t be reduced to a simple ColdFusion list, as in this example. But if you CAN represent your
navigation tree as a list, it’s certainly a Best Practice to do so, as it greatly simplifies matching up the tree
to your Save/Next logic.

5.3.6.4 Putting Data Elsewhere on a Page

As long as data gets onto a page (everywhere it’s needed) at the time the time it’s loaded, it’s Section 508
compliant. That is, data cannot be put somewhere ONLY by JavaScript. As long as the user has the option
to save the current page and return to it at some later time, the distribution of data to somewhere else on
the page is not being denied to the user. If the user DOES have JavaScript on, however, they just get to
see it a little sooner, that’s all.

All of the browsers you’re required to support now implement the document.getElementById method and
the innerHTML property of the object. So that way of putting data elsewhere on a page is always
available to you. But it’s not the simplest way to do things, not by a long shot. The Best Practice is,
always put data elsewhere by the simplest available method that works in all supported browsers.

EASIEST (if you’re in a form), putting data into form elements:

• Text and textarea: Use this.form.ElementName.value from a different form element in the same
form, or this.ElementName.value from the form’s onSubmit handler. In the following, to save
space, ((form)) will be used to mean “this.form in an element, or this in a form’s onSubmit”.

• Radio buttons: Use ((form)).ElementName[number].checked = true/false, where number is the
0-based array index of the radio button you want to check. Radio button groups always have the
same element name, so they are represented by arrays. Microsoft Internet Explorer lets you set
((form)).ElementName.value = something, and it will find the radio button that contains that
value and check it. But ONLY Internet Explorer allows this. So don’t do it that way. Use the
checked attribute instead.

• Checkboxes: Use ((form)).ElementName.checked = true/false if there’s only one checkbox with
that element name. It’s also possible to define multiple checkboxes with the same name, in which
case, use the same syntax as for radio buttons, above.

SBA ColdFusion Programming Standards

Page 97 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

• Single Value Dropdown Menus: If a dropdown menus (“select list”) does not contain the
attribute “multiple”, it can have only one value. In that case, use the syntax
((form)).ElementName.options[number].selected = true to set its value, where number is the 0-
based array index of the <option> tag you want to be selected. As with radio buttons, Microsoft
Internet Explorer lets you set ((form)).ElementName.value = something, and it will find the
<option> that contains that value and select it. But ONLY Internet Explorer allows this. So don’t
do it that way. Use the selected attribute of the option you want to select instead.

• Multiple Value Dropdown Menus: If a dropdown menu DOES contain the “multiple” attribute,
you have no choice. You must use ((form)).ElementName.options[number].selected = true/false
syntax for each <option> you want to select or deselect. Note that, with single value dropdown
menus, you never have to set any selected property to false. All you have to do is set the one you
want to set to true, and any other option that’s selected will automatically be deselected. But in a
multiple value dropdown menu, you have to explicitly deselect options by setting their selected
property to false.

SIX-OF-ONE, HALF-A-DOZEN-OF-THE-OTHER (but only if you’re in a form):

• ReadOnly Text Displays: It’s considerably easier to put data into a readonly or disabled text
field (syntax above) than it is to use document.getElementById and innerHTML. But it can create
the impression that the user could get to the data and change it under some conditions. In
addition, a clever user who knows HTML can save the page to their hard drive, edit it and make
the field updatable. Conceivably, if the action page retrieves the values of readonly fields, it
would allow such a hacker to succeed at editing the field that you wanted to be readonly.

SAFEST WAY (and the only way if the target destination is not in a form):

• ReadOnly Text Displays: It’s not that hard to use ((ref)) = document.getElementById(“idname”)
to retrieve an HTML object reference to the HTML element that contains the matching
id=”idname” attribute. Of course, this requires that the value of the id attribute (“idname” in this
example) must be unique in the Web page or frame. (Each frame has its own document, so the
getElementById is restricted to the document you’re searching.) If the call to getElementById
returns a value other than the JavaScript keyword null, it will be an object reference. You can
then use ((ref)).innerHTML = “data you want to display” to display readonly data, presumably in
a box with class=”viewdata” to mark it as a readonly data display.

Lately there’s been a tendancy for some folks to use the getElementById and innerHTML method in all
circumstances, as if the form element techniques have been deprecated or something. That’s NOT the
case. Form element techniques are still, by far, the most widely supported ways of putting data elsewhere
on the screen. They are NOT going away in future version of HTML. You SHOULD use the older,
simpler form element techniques, particularly where the form element values are not readonly.

The next section “How to Show and Hide Page Elements Dynamically” will go into greater detail on how
to use getElementById.

SBA ColdFusion Programming Standards

Page 98 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.3.6.5 How to Show and Hide Page Elements Dynamically

All of the 5 browsers and all versions listed in 3.5.1 (Browser Support) now allow showing and hiding
elements of a Web page with the following cross-browser-compatible techniques:

• The id attribute (<div id="…">, <p id="…">, <td id="…">,<tr id="…">, etc).
• document.getElementById("…") to retrieve the page element by its id attribute.
• CSS: style="display:none" to hide the element in its initial state.
• JavaScript: ((element)).style.display = "none"; to hide the element dynamically (based on

changing situations on the page).

These techniques affect ONLY THE USER’S AWARENESS of the page element. That is, it is simply
not rendered on the screen and not read aloud in Web page readers for the blind. The space normally
taken up by the page element disappears, so visually a page appears to expand or collapse, or in a Web
page reader the next page element in sequence is immediately read.

But the page element itself is still on the page. If it contains form elements, those form elements are still a
part of the form, and if they would normally be sent based on their state (a checked checkbox, for
example), then they’ll be sent when the form is submitted.

The following example shows Initial Interest Rate only if the Interest Type is Fixed, and shows Spread
over WSJ Prime if Interest Type is Variable. Initially, neither is displayed:

<tr>
 <td class="MandLabel">Interest Type:</td>
 <td class="MandData" nowrap>
 <input type="Radio" name="FixVarInd" value="F" onClick="
 document.getElementById('RowIIR').style.display = 'block';
 document.getElementById('RowWSJ').style.display = 'none';
 "> Fixed
 <input type="Radio" name="FixVarInd" value="V" onClick="
 document.getElementById('RowIIR').style.display = 'none';
 document.getElementById('RowWSJ').style.display = 'block';
 "> Variable
 </td>
</tr>
<tr id="RowIIR" style="display:none;">
 <td class="MandLabel">Initial Interest Rate:</td>
 <td class="MandData">
 <input type="Text" name="IIR" ...>
 </td>
</tr>
<tr id="RowWSJ" style="display:none;">
 <td class="MandLabel">Spread over WSJ Prime:</td>
 <td class="MandData">
 <input type="Text" name="WSJ" ...>
 </td>
</tr>

SBA ColdFusion Programming Standards

Page 99 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

Note that the onClick JavaScripts use single quotes to delimit id names, ‘none’ and ‘block’, because the
HTML is using double quotes to delimit the JavaScripts. Escaping double quotes using the JavaScript
convention of \" doesn’t work in this situation, because the onClick is delimited by HTML double quotes
and HTML doesn’t understand \".

Also note that it’s getElementById, not getElementByID (a common mistake).

If you’re already using SBA look-and-feel (as required by this standards document), you already have
another example on your pages. The “10-pixel white margin” regions of the page (that is, the white space
outside the 1-pixel black border) is now a page control that maximizes the AppData region of the page.
You can see this by mousing over any margin and seeing the tooltip “Maximize data entry region of
screen”:

Clicking on it hides the regions called SBALogo, MainNav, AppName, AppInfo, AppNav and BotMost,
then resizes AppData to take advantage of the added space (and changes to tooltip to say “Minimize”):

In an example of coding for flexibility, the code that does this does not assume that the style.display will
always be either “none” or “block”. It simply saves the initial value of style.display (for use when
restoring the region to visibility), like so:

var gRowSBALogo;
var gRowSBALogoSaveDisplay;
...
function InitDynamicContent ()
{
...
gDivSBALogo = document.getElementById("DivSBALogo");
gDivSBALogoSaveDisplay = gDivSBALogo.style.display;
...

You might want to do the same sort of thing to keep your own show-and-hide code flexible.

SBA ColdFusion Programming Standards

Page 100 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.3.6.6 How to Change Page Element Classes Dynamically

SBA look-and-feel calls for mandatory form elements to be labeled with class=”mandlabel” and for the
form element to be encased in a nested table with class=”manddata”. For example:

<tr>
 <td id="LabelEIN" class="mandlabel">
 <label for="EIN">EIN:</label>
 </td>
 <td>
 <table id="DataEIN" border="1" class="manddata"><tr><td>
 <input type="Text" id="EIN" name="EIN"
 value="" size="10" maxlength="10">
 </td></tr></table>
 </td>
</tr>

Although you’re not required to place a nested table around optional form elements which use classes
“optlabel” and “optdata”, to doin so poses as an interesting alternative to the conventional technique. For
example, you could define an optional field with a nested table:

<tr>
 <td id="LabelEIN" class="optlabel">
 <label for="EIN">EIN:</label>
 </td>
 <td>
 <table id="DataEIN" border="1" class="optdata"><tr><td>
 <input type="Text" id="EIN" name="EIN"
 value="" size="10" maxlength="10">
 </td></tr></table>
 </td>
</tr>

This allows dynamically changing it to mandatory using JavaScript and className (not just class):

document.getElementById('LabelEIN').className = 'mandlabel';
document.getElementById('DataEIN').className = 'manddata';

A brief example page is available online at http://danube.sba.gov/testlookandfeel/ChangingClasses.html
It uses radio buttons and toggles which fields are mandatory according to which radio button you click,
via the onclick event handler. Screen snapshots are from Opera 8.5.1 for the PC, showing that this
technique is also cross-browser compatible:

http://danube.sba.gov/testlookandfeel/ChangingClasses.html�

SBA ColdFusion Programming Standards

Page 101 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.3.7 How to Create an HTML Equivalent of a Graphic for TextOnly Mode

Using the Paint program and Calculator, graphics which reduce page loading speed may be replaced with
an HTML equivalent that contains identical colors and the original graphic.

The following is an image for which we want to have an HTML equivalent. (If you’re reading a paper
copy of this document printed on a black and white printer, you can see this same image in color at
http://tech-net.sba.gov/index.cfm). As you can see, we start out with it opened in the Paint accessory:

Steps to create an HTML equivalent of a graphic:

• 1. Select the eyedropper tool, which has the tool tip “Pick Color”. See the circle labeled “1”
(upper left).

• 2. Click on any color that you want to know the RGB (red, green, blue) values for. See the circle
labeled “2” (upper right).

• 3. This causes Paint to switch the foreground color to the color you clicked. See the circle labeled
“3” (lower left).

http://tech-net.sba.gov/index.cfm�

SBA ColdFusion Programming Standards

Page 102 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

Steps to create an HTML equivalent of a graphic, continued:

• 4. From the menu bar, select Colors > Edit Colors.

• 5. At the bottom of the Edit Colors dialog box, press the Define Custom Colors button.

• 6. The RGB values for the color you clicked on will be on the right side of the dialog box. Write
down the numbers, because you’ll need them in step 8.

SBA ColdFusion Programming Standards

Page 103 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

Steps to create an HTML equivalent of a graphic, continued:

• 7. In the Calculator program, select View > Scientific if that’s not already the view you normally
use:

• 8. To convert decimal to hexadecimal using the Calculator accessory, enter the decimal value
while the Dec radio button is selected:

• 9. Then press the press the Hex radio button to see the hex value:

• 10. So the red, green, blue values (255, 206, 0) are FF, CE, 00 in hex, coded adjacently in HTML:

<td bgcolor="#ffce00"> ... </td> <!-- Use ##ffce00 in CFML. -->

The following is an HTML-only equivalent of the original graphic. If you’re reading a paper copy of this
document printed on a black and white printer, you can see this same HTML table in color by going to
http://tech-net.sba.gov/index.cfm and clicking on “Text Only” hotlink. Do a View Source, if you like, to
see the bgcolor attribute:

http://tech-net.sba.gov/index.cfm�

SBA ColdFusion Programming Standards

Page 104 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.3.8 BLOBs, CLOBs and Text Datatypes, and CFQueryParam

As mentioned above in Section 3.4.1 (“Structured Query Language (SQL) versus Stored Procedure
Calls”), Sybase stored procedures cannot handle BLOB and Text datatypes as parameters. This is also
true of the Oracle CLOB datatype. In these 3 cases, you have no choice but to use CFQuery and SQL to
do inserts and updates.

In the case of Oracle CLOB data, if the amount of data exceeds 4000 characters, Oracle will limit the
amount of data transferred to 4000 characters. In this case, you MUST use CFQueryParam. This is in
“The Right Way To Do It” section because nothing else seems to work. Examples:

<cfquery ...
insert into EvtTbl
 (
 EvtId,
 EvtDesc,
 EvtDt
)
Values
 (
 53,
 <cfqueryparam value="#Variables.EvtDesc#"
 cfsqltype="cf_sql_clob">,
 '#Variables.EvtDt#'
)
</cfquery>

or

<cfquery ...
update EvtTbl set
 EvtDesc = <cfqueryparam value="#Variables.EvtDesc#"
 cfsqltype="cf_sql_clob">
Where EvtId = 53
</cfquery>

Note that quotes are NOT put around the <cfqueryparam> tag. All of the quote handling is done by the
<cfqueryparam> tag itself.

Note the similarity of CFQueryParam to CFProcParam, which performs a similar function. You don’t
really have to code CFProcParams, however, because we have a Stored Procedure Call File Generator
that does that for you. Historically, CFProcParam became a part of the ColdFusion language first, many
years before CFQueryParam. This may explain why many ColdFusion developers are unaware that
CFQueryParam even exists. But passing more than 4000 characters to an Oracle CLOBs is a situation
where you have no choice but to use it.

The following section (5.3.9, “SQL Injection, Data Validation and CFQueryParam”) documents another
reason why you may want to use CFQueryParam.

SBA ColdFusion Programming Standards

Page 105 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.3.9 SQL Injection, Data Validation and CFQueryParam

CFQueryParam is also useful to prevent “SQL Injection” attacks. SQL Injection is a technique used by
hackers to sabotage other people’s databases. There are 2 ways to do it, one way for numeric fields and
another way for non-numeric fields. Suppose you have a text box on a form (either a <textarea> form
element or an <input type="text"> form element without the maxlength attribute). Suppose further that a
hacker knows the name of a database table used by your Web site. Say, for example, that table name is
PersonTable. The hacker could attack your database as follows:

If the field is numeric, enter 123); delete from PersonTable;
If the field is non-numeric, enter Gotcha'; delete from PersonTable;

When it comes time to update the database, the hacker’s manually-entered SQL is “injected” into the
ColdFusion page’s SQL statement to do the insert or update, like so:

If the field is numeric:

 insert into CompanyTable
 (
 ...,
 AnnualGrossRevenue
)
 values
 (
 ...,
 #Variables.AnnualGrossRevenue#
)

becomes:

 insert into CompanyTable
 (
 ...,
 AnnualGrossRevenue,
 ...
)
 values
 (
 ...,
 123); delete from PersonTable;,
 ...
)

SBA ColdFusion Programming Standards

Page 106 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

If the field is non-numeric:

 update CollateralTable set
 CollateralDesc = '#Variables.CollateralDesc#'
 where ...

becomes:

 update CollateralTable set
 CollateralDesc = 'Gotcha'; delete from PersonTable;'
 where ...

Note that it doesn’t matter whether it’s an insert or an update. It also doesn’t matter whether you’re
updating the same table name. As long as PersonTable is in the same database as CompanyTable or
CollateralTable, the hacker’s manually-entered SQL will be executed. The delete without a “where”
clause throws away all data in the PersonTable. In the non-numeric example, the hacker does twice the
damage: By keeping the update statement from reaching its own “where” clause, all CollateralDesc
columns in CollateralTable will be also set to “Gotcha”. The SQL that FOLLOWS the SQL Injection will
be syntactically incorrect, but by then the damage is done.

Of course, SQL Injections rely on knowing the names of database objects. DO NOT REVEAL OUR
REAL DATABASE OBJECT NAMES IN ANY COMMUNICATION THAT THE PUBLIC CAN SEE.
And if you have a “Show SQL” debugging feature, hide it from the public as well. (And don’t publicize
its existence.) In addition, there are 3 ways to preventing SQL Injection attacks in ColdFusion: careful
data validation, avoidance or careful use of PreserveSingleQuotes and CFQueryParam.

Careful Data Validation: If a numeric field is validated to be numeric, it cannot contain SQL Injection
code, period.

Avoidance or Careful Use of PreserveSingleQuotes: Normally, ColdFusion will double all occurrences
of single-quotes coming from variables between <cfquery> and </cfquery>. So, for example, If
CompanyName contains “Joe’s Diner”, between <cfquery> and </cfquery>, '#CompanyName#'
becomes 'Joe''s Diner'. (between the e and the s, those are 2 single quotes.) By the standardization of
SQL, doubling single quotes is how a single single-quote can be saved to a non-numeric column.
Normally, this behavior of ColdFusion prevents SQL Injection using non-numeric columns. But
sometimes there are situations where you need to control the number of occurrences of single-quotes. In
those situations, ColdFusion lets you say where #PreserveSingleQuotes(Variables.WhereClause)#, for
example. If you use PreserveSingleQuotes, you MUST, MUST, MUST double all single-quotes that were
input by the user. For example:

<cfset Variables.WhereClause = Variables.WhereClause
 & "and (CompanyName = '"
 & Replace(Form.CompanyName, "'", "''", "ALL")
 & "') ">

CFQueryParam: The ColdFusion documentation asserts that a major reason to use CFQueryParam is
that it will prevent SQL Injection attacks. See the previous section (5.3.8, “BLOBs, CLOBs and Text
Datatypes, and CFQueryParam”) for example code. However, the “right way to do it” is to always do
careful data validation, and to always avoid or carefully use PreserveSingleQuotes, regardless of whether
or not you use CFQueryParam.

SBA ColdFusion Programming Standards

Page 107 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.3.10 Cross-Browser HTML and JavaScript for Internet Sites

See section 3.5.1, above, for current browser support standards. The following are specific explanations
and examples to help you bring your code into compliance with that section.

If your code will be seen only by SBA employees and contractors behind the SBA firewall, it’s said to be
an “Intranet” application. Intranet applications must be compliant with the SBA’s official browser, which
is currently Microsoft Internet Explorer (“MSIE”), version 6.

If your code will also be seen by the public outside the SBA firewall, it’s said to be an “Internet”
application. Internet applications must be compatible with the 3 most recent major versions of MSIE and
Netscape, for both PC and Macintosh. Another browser that we often support, though it’s not mandatory
to do so, is Safari for the Macintosh, simply because of its market share in the Mac community.
Developers of Intranet-only applications should also learn the Internet rules, in case your application is
ever opened up to the public, and so that you will someday be trusted to work on public SBA sites.

This section is pertinent to our ColdFusion developers. isn’t a “Right Way To Do It” about ColdFusion,
per se. It’s HTML and JavaScript associated with application development. So the audience is right, even
though it’s a little off-topic for a ColdFusion document.

HTML To Be Avoided in Public Applications

<marquee>
Reason: MSIE only
Instead: Use a Java applet or Flash animation.
Examples: Specific-purpose Flash animation “sbapartner.swf” at http://www.sba.gov/

General-purpose “mflip.class” Java applet at http://www.sba.gov/tmonline/
<textarea wrap=”virtual/physical”>

Reason MSIE only
Instead: Use wrap=”soft/hard”.

<layer>
Reason: Netscape only
Instead: Use <div> with CSS-P (cascading style sheet positioning).

<formelement ... disabled ...>
<formelement ... readonly ...>

Reason: MSIE (and some versions of Netscape) only
Explanation: Some Netscape versions support this, but not all, so it’s not guaranteed to work.

It’s okay to use disabled and readonly in HTML and the true/false properties
disabled and readonly in JavaScript, but it’s not okay to rely on those techniques
to work. See the JavaScript formelement.disabled item below for a JavaScript
addition that supports Netscape as well.

http://www.sba.gov/tmonline/�

SBA ColdFusion Programming Standards

Page 108 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

JavaScript To Be Avoided in Public Applications

window.location.href (URL);
Reason: MSIE only
Explanation: Within window.location, href is a property, not a method.
Instead: Use href as a property, assigning the URL to it:

window.location.href = "dsp_gotothispage.cfm";

dropdownmenu.value
Reason: MSIE only
Explanation: <option> tags have values, not the <select> tag (drop down menu) that contains

them.
Instead: Use selectedIndex to retrieve the selected option. If selectedIndex >= 0, use:

dropdownmenu.options[dropdownmenu.selectedIndex].value

history.go(0); // (to force a hard page reload)
Reason: MSIE only
Explanation: Like the Back and Forward browser buttons, the go method is designed to be the

least destructive of all page loads. It requests a reload from the memory copy of
the page as last imaged, with form elements’ contents preserved, assuming that
the page isn’t expired from cache. Only MSIE implements go(0) as a destructive
reload of the current page. Therefore, it appears that Netscape’s go(0) doesn’t
work, when in fact Netscape is doing it right.

Instead: Use the method specifically provided for a hard reload of the current page:
window.location.reload(true);

Clever trick: Request the current page with an ignored parameter tacked onto the URL. Set the
ignored parameter to the current time, so that the generated URL won’t match
any URL in cache. This forces a browser request all the way back to the server,
the hardest of all possible reloads, even if the request passes through a proxy
server that also caches pages:
window.location.href = "dsp_mypage.cfm?Time=125703";

radiobutton.value
Reason: MSIE only
Explanation: A group of multiple radio buttons with the same name is an Array object. The

Array object doesn’t have a value, the individual elements of the array do. When
it sees this syntax, MSIE scans the array, finds the one with the checked attribute
equal to true, and returns that as the value. Netscape does not.

Instead: You have to do it manually, in case the browser is Netscape:
var sValue = null;
for (var i = 0; i < radiobutton.length; i++)
 if (radiobutton[i].checked)
 {
 sValue = radiobutton[i].value;
 break;
 }
// Now sValue can be used as the value of the group.

SBA ColdFusion Programming Standards

Page 109 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

JavaScript To Be Avoided in Public Applications, continued:

document.all.formelementname
Reason: MSIE (and some Netscape versions) only
Explanation: Some Netscape versions support this, but not all. So it’s not guaranteed to work.
Instead: The new cross-browser way to do this is to give the element an id attribute that’s

unique within the page. (An id attribute must be unique within the page. That’s
why it’s called the element’s id.). Then use document.getElementById() to
retrieve it. This has the advantage of working on HTML elements as well as form
elements, as in the following example:

 Spread over Wall Street Journal Prime:

...
<label><input type="Radio" ... onClick="
document.getElementById('WSJ').innerHTML =
 'Spread over Wall Street Journal Prime '
 + '(MANDATORY)';
"> Variable Interest</label>

<script language="VBScript"> (etc)
Reason: MSIE only
Explanation: To be cross-browser compatible, don’t use any scripting languages other than

JavaScript. Don’t give any language attribute other than “JavaScript” (the default
if the language attribute is not given), “JavaScript1.1” or “JavaScript1.2”. Don’t
give “JavaScript1.1” or “JavaScript1.2” versions without first defining an
equivalent “JavaScript” version, in case the browser doesn’t support
“JavaScript1.1” or “JavaScript1.2” (unlikely).

top.AppData.document.myform.StCd.options[i]=new Option("Utah","UT");
Reason: Netscape only
Explanation: As of version 5.0 of MSIE, you can no longer directly populate drop-down

menus that reside in a different frame.
Instead: Define a function in the frame that contains the drop-down menu. Because it

resides in the same frame, the new function is able to manipulate options in the
drop-down menu. From other frames, call that function.

formelement.disabled
formelement.readonly

Reason: MSIE (and some versions of Netscape) only
Explanation: Some Netscape versions support this, but not all. So it’s not guaranteed to work.

It’s okay to use disabled and readonly in HTML and the true/false properties
disabled and readonly in JavaScript, but it’s not okay to rely on those techniques
to work.

In addition: Add JavaScript to reset the form element if changed:
<input type="Text" ... disabled ... onChange="
this.value = this.defaultValue;">

SBA ColdFusion Programming Standards

Page 110 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.3.11 Suppressing Extraneous “White Space”

The term “white space” refers to spaces, tabs, carriage returns and line feeds, all of which result in white
space when you select View Source on a Web page. In some cases, this is merely a nuisance, forcing you
to scroll down to see the HTML you wanted to see. But in other cases, such as comma-separated-values
for Excel spreadsheets and Word wizards, or XML generation, it can render your generated output totally
worthless and unusable.

5.3.11.1 What Causes It

Here’s an example of what causes extraneous white space. Suppose you have a query GetEmps of 25
employees and their salaries. To avoid hitting the database a second time to calculate sum(AnnualSalary),
you choose instead to code the following loop without any white space suppression at all:

<cfset TotalOfSalaries = 0>
<cfloop query="GetEmps">
 <cfset TotalOfSalaries = TotalOfSalaries + GetEmp.AnnualSalary>
</cfloop>
<cfoutput>
Total salaries during fiscal year: #DollarFormat(TotalOfSalaries)#.
</cfoutput>

This results in 53 blank lines preceding the line that begins “Total”. Why? The reason is, without any
white space suppression, ColdFusion treats anything and everything between CFML tags as data to
go out to the Web page. You don’t see the white space in the example code above, because it’s white on
white, so let’s highlight it. Suppose e means “end of line”, generally carriage-return-line-feed on
Windows or just line-feed on Unix. Suppose b means blank. Here’s where the hidden white space is:

<cfset TotalOfSalaries = 0>e
<cfloop query="GetEmps">e
bbbb<cfset TotalOfSalaries = TotalOfSalaries + GetEmp.AnnualSalary>e
</cfloop>e
<cfoutput>e
Total salaries during fiscal year: #DollarFormat(TotalOfSalaries)#.e
</cfoutput>e

The second and third lines (cfloop and cfset) are executed 25 times, so that results in 50 end-of-line
characters. The fourth line (/cfloop) is also executed 25 times, but only once does the end-of-line after it
get sent to the Web page (after the last loop). So the first, fourth and fifth lines each contribute one more
end-of-line to the output Web page, for a total of 53 blank lines before the “Total” line. The blanks at the
start of the third line also get sent, but they’re white on white, so you don’t see them. The same would be
true if bbbb was one tab instead of 4 blanks.

5.3.11.2 When It Can Be a Serious Problem

When you’re generating comma-separated-values, every blank and every end-of-line is significant. When
you’re generating XML, blanks and end-of-line can get into the data (between XML tags), sometimes
with disastrous results when stored to the database. When you’re doing this within an application with
session control, all of the white space from the Application.cfm file sneaks into the output before your
page ever even gets a chance to suppress it.

SBA ColdFusion Programming Standards

Page 111 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

Therefore, if ANY file in an application’s directory is used to generate comma-separated-values or XML,
or if it’s POSSIBLE that there may be a file there SOMEDAY to generate comma-separated-values or
XML, you need to attack the white space suppression problem at the application level.

5.3.11.3 Suppressing White Space with CFSilent (Easy, But Not Too Flexible)

One of the easier techniques for suppressing white space is <cfsilent> … </cfsilent>. Basically, <cfsilent>
turns off all output until </cfsilent>. It’s a mode that propagates through to all shared code as well. So if
you say <cfsilent> … <cfinclude template="dsp_something.cfm"> … </cfsilent>, nothing from
dsp_something.cfm will get output either, even if it’s in a <cfoutput> block.

Hence, one approach to white space suppression would be to enclose all of Application.cfm in a
<cfsilent> … </cfsilent> block, being careful not to have an end-of-line after </cfsilent>. Suppose |
represents the absolute end-of-file of Application.cfm. It would look something like this:

<cfsilent>e
Application.cfm code e
</cfsilent>|

If you do this, no white space from Application.cfm will sneak into any of the files that it controls, and
it’s up to the requested page to decide whether or not to do its own white space suppression. In the case of
comma-separated-values or XML generation, it certainly would do its own white space suppression.

What makes <cfsilent> relatively inflexible is the fact that you can’t turn it off from within the enclosed
block, which makes it difficult if not impossible to throw in debugging displays when necessary. If
everything is at the same nesting level, you could code </cfsilent>, followed by the debug code you wish
to display, and then <cfsilent again. The problem is that it’s very unlikely that the place you want to throw
in a debugging display is at the same nesting level as <cfsilent>. Therefore, you would have to nest
turning <cfsilent> off and on at all levels, so as to balance out ever start tag with an end tag. It really
hampers debugging in an emergency. If the problem is in a cfincluded file, there’s no way to turn it off at
all.

5.3.11.4 Suppressing White Space with CFProcessingDirective (Doesn’t Propagate)

A noble attempt to get around these problems was <cfprocessingdirective suppresswhitespace=”Yes”> …
</cfprocessingdirective>. It allows a nested <cfprocessingdirective suppresswhitespace=”No”> block to
turn it off, regardless of nesting level.

The problem with this technique is that it DOESN’T propagate through to shared code, such as cfincluded
files, custom tags, cfmodule, etc. The result is that all shared code files have to also use this same
technique. (It would have been ideal if this mode propagated through to shared code, but then could be
overridden in the shared code, but that’s not how they made it work.)

SBA ColdFusion Programming Standards

Page 112 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.3.11.5 Suppressing White Space with EnableCFOutputOnly Mode (Absolute Control)

Of all the many ways to suppress white space, <cfsetting enablecfoutputonly="Yes"> was the first, and is
still by far the best for the following reasons:

• It has the virtue of propagating through to shared code automatically.
• It can be overridden in shared code (by using cfoutput).
• You can throw in debug displays anywhere.
• You have absolute control over what gets into the output.
• It’s not a start tag. It doesn’t have to be balanced with an end tag. If you want to turn it off, you

do that with <cfsetting enablecfoutputonly="No">.

All you have to realize is this one simple rule. After <cfsetting enablecfoutputonly=”Yes”>,
NOTHING gets into the output except what’s between <cfoutput> and </cfoutput>. (In a cfscript
block, you have to use the WriteOutput function, but that’s cfscript’s way to do cfoutput.)

So, if you want to allow generation of comma-separated-values or XML output, but you want a majority
of your pages not to do white space suppression, you can use the same technique as with <cfsilent>
(Remember that e is end-of-line and | is end-of-file):

<cfsetting enablecfoutputonly="Yes">e
Application.cfm code e
<cfsetting enablecfoutputonly="No">|

Then each subordinate page is free to do its own cfsetting, or not, according to its own needs. But an even
more powerful usage is to turn it on application wide:

<cfsetting enablecfoutputonly="Yes">e
Application.cfm code e
|

By not turning it off at end of Application.cfm, EnableCFOutputOnly mode propagates through to of the
application’s pages, and every page starts out with EnableCFOutputOnly mode on. Each page is free to
turn it off to do Web page output, or simply enclose the whole Web page within <cfoutput> and
</cfoutput>.

EnableCFOutputOnly mode imposes a coding style of always using <cfoutput> to get something onto the
output Web page. This can be disconcerting to newcomers who aren’t used to coding <cfoutput> all the
time. They may wonder why their new Web page is blank, for example.

All of the /library shared code routines were written to be compatible with EnableCFOutputOnly mode.
That way, even if you’re generating comma-separated-values or XML, you have all of the /library
routines available to you.

How to code for EnableCFOutputOnly mode compatibility:

• If cfoutput is active, turn it off before doing a cfinclude, then turn it back on again. Under CFMX
7 and higher, this prevents the comment header of the included file from generating white space.
Example: </cfoutput><cfinclude template="includedfile.cfm"><cfoutput>

• When generating HTML, put all HTML inside the cfoutput block, not just #name# references.
• Don’t turn EnableCFOutputOnly mode off or on in shared code.

SBA ColdFusion Programming Standards

Page 113 of 127 Version: 3.2.3
5. Best Practices Modified: 11/06/2008

5.4 Debugging

5.4.1 Don’t Turn On CF Debugging Unless You Absolutely Have To

It has recently been revealed that there’s a “memory leak” in ColdFusion Server if you have CF Server
Debugging turned on. (This is the feature that prints out the contents of variables at the end of a CFML
page.)

If you’re running your own copy of CF Server on your PC, don’t turn on CF Debugging unless you
absolutely have to. Turning it on and leaving it on will eventually result in the “Running Out of
Resources” alert, and the only way to recover lost memory is to reboot your PC.

If you’re experiencing a difficult problem and request that the administrators turn on CF Debugging, they
may be reluctant to do so for this exact reason. Use CFDUMP on the Variables scope, Session scope, etc,
manually instead.

5.4.2 Use CFDUMP to Debug in ColdFusion MX

CFDUMP actually became available in ColdFusion 5.0, but the SBA skipped 5.0 and went straight to
ColdFusion MX. So for us, CFDUMP becomes available in ColdFusion MX. It’s VERY useful in
debugging.

When your code is misbehaving and you can’t figure out why, the usual reason is that some variable
somewhere doesn’t contain the value you think it contains. CFDUMP is a convenient way to display the
entire contents of structures and arrays, including those that are complex and nested.

Sometimes CFDUMP can produce much too much information, but the problem in debugging is usually
not enough information.

Examples:

<cfdump var="#Variables#" label="Entire Variables Scope">
<cfdump var="#Variables.DOMObject" label="Parsed XML">
<cfdump var="#getDistOfcCounties#" label="Counties Result Set">

In light of 5.4.1, above, and considering that you have to get your IP address configured just to use CF
Debugging in the first place, CFDUMP is really a much better way to go.

SBA ColdFusion Programming Standards

Page 114 of 127 Version: 3.2.3
6. Application Deployment Modified: 11/06/2008

6 Application Deployment

Application.cfm: Because cfcrypt.exe in c:\cfusion\bin (Windows) and cfencode in
/opt/coldfusion[mx]/bin/ (Unix) have proven to be very weak and very easily decrypted, the previous
requirement to encrypt Application.cfm in this way is rescinded. Instead, retrieve shared logins through
the firewall. See 3.2, Shared (or “Generic”) Logins.

“Stage” Directories: Because some directories contain /save subdirectories, experimental files, debug
files, etc, that should not be released to the test or production environments, most applications have
associated subdirectories of the development server’s document root with “stage” prefixed to their names.
Only files copied to the stage directory will be released to subsequent environments. Generally, stage
directories are controlled by government employees, not developers.

“EAR” and “WAR” File Deployment: ColdFusion MX 7 now supports application deployment as EAR
(Enterprise Archive) or WAR (Web Archive) files. These are special kinds of JAR (Java Archive) files.
Basically, all 3 formats are Zip files containing Java class files and directories. This means that a given
application can be released to test and production environments without source code. This is a much more
secure way to deploy, so there’s a good chance that we will use this feature some time in the future. Note
that the EAR or WAR file is very much like one of our stage directories, except that it’s only one file, and
it contains only executables (and a stage directory contains only source code).

SBA ColdFusion Programming Standards

Page 115 of 127 Version: 3.2.3
7. Programming Cautions Modified: 11/06/2008

7 Programming Cautions (“Gotchas” We’ve Discovered)

7.1 All Versions of ColdFusion

Several factors have been found to cause ColdFusion Server to crash in the past. Some of them may only
be a problem under CF 4.5, while other issues may still be a problem under ColdFusion MX (we don’t
know yet). Regardless, the consequences of being unable to resolve issues stemming from development
environment crashes are significant. Therefore, you MUST avoid making the following mistakes at all
costs:

7.1.1 CFPROCRESULT

Never code a CFSTOREDPROC without a CFPROCRESULT. Under CF 4.0, this would only result in a
cryptic error message if the stored procedure returned a result set and there was no CFPROCRESULT.
Under CF 4.5, the same situation crashes ColdFusion Server. Even if the stored procedure doesn’t
currently return a result set, the database group could add one at any time. (It’s their prerogative to change
stored procedures, after all.) So, always code a CFPROCRESULT. If you aren’t using it, a typical one is
 <CFPROCRESULT NAME=”Ignored”>

Since you should be using shared code to call stored procedures (see section 4.1.17 Stored Procedure Call
Files), and since SPC files always have a CFPROCRESULT, you don’t have to worry about this problem
if your application is compliant with SBA ColdFusion Standards.

7.1.2 Calling a Java Method

Never code the wrong number of parameters to a Java object method. When the GLS Jaguar method
cfAuthenticate.initComponents was changed from 4 parameters to 5 parameters, old calls that had only 4
parameters crashed ColdFusion 4.5. Always make SURE you call Java object methods with the correct
number of parameters.

7.1.3 Frequent Server Crashes

If every time you test a certain page in your application, you’re asked to log in again, consider that maybe
your code is crashing ColdFusion Server. This is the primary symptom that you’ve found something that
crashes CF Server. When you find out what it is, document it here!!

SBA ColdFusion Programming Standards

Page 116 of 127 Version: 3.2.3
7. Programming Cautions Modified: 11/06/2008

7.2 ColdFusion 4.5

7.2.1 The “Randomly Zeroed Out Money Fields” Problem

In ColdFusion 4.5, with Sybase native driver datasources, record sets containing money fields randomly
get zeroed out. The solution is to substitute

CONVERT(NUMERIC(15,2), moneyfieldname) AS moneyfieldname

for moneyfield, if you control the SQL, or to use output parameters of a stored procedure to retrieve the
money field, or to use an ODBC datasource instead.

7.2.2 Sometimes You Get Errors on the Next Database Call

An exceedingly bizarre behavior of CF 4.5 with Sybase drivers was that you could get an error on one
database call, but the error would not be reported until the next database call (example: “foreign key
constraint violation, insert fails” when the call was actually a select). This typically happened when an
underlying table was recompiled, but the stored procedures that reference it were not recompiled.

Therefore, when you get a Sybase error message that makes no sense, consider the possibility that it could
have occurred on the prior database call for the same pooled connection. Figure out what was the previous
database call in that situation. This may get you closer to where the error actually occurred.

7.2.3 Sybase Error 3621

In addition, you might see Sybase error 3621, which could be caused by the need to recompile database
objects dependent on a changed object.

7.2.4 “Unknown Connect error!”

In addition, you might see “Unknown Connect error!”, which could also be caused by the need to
recompile database objects dependent on a changed object.

But “Unknown Connect error!” can also mean that the datasource is not defined.

SBA ColdFusion Programming Standards

Page 117 of 127 Version: 3.2.3
7. Programming Cautions Modified: 11/06/2008

7.3 ColdFusion MX 6.x (and Conversion to MX in General)

7.3.1 JDBC: Like ODBC, Delimit Non-Numeric Literals with Single Quotes

Like ColdFusion, Sybase intrinsically supports both single quotes and double quotes to delimit strings.
Under Sybase native drivers, double quotes were allowed. In fact, because they occur less often in data,
double quotes were considered the preferred way to delimit Sybase strings.

But as of ColdFusion MX, which uses JDBC drivers, single quotes aren’t just allowed. They’re required.
Double quotes won’t work.

7.3.2 JDBC: Parameters to Stored Procedures Must Be in Correct Order

In ColdFusion 4.x and 5.x using Sybase native drivers, the CFPROCPARAM DBVARNAME attribute
allowed parameters to stored procedures to be out of order. Under ColdFusion MX, we have to use JDBC
drivers, and JDBC doesn’t yet support this feature of Sybase. The result is, under CFMX,
CFPROCPARAMs are passed to stored procedures in the order they’re coded, and DBVARNAME is
ignored.

We dealt with this problem using Stored Procedure Call files. See 4.1.17 Stored Procedure Call Files,
above, for detailed information about how to call SPC files.

7.3.3 JDBC: Designation of Input and Output Parameters Must Be Correct

A runtime error will be generated if the type=”In”, type=”Out” or type=”InOut” attribute is incorrect.

Since the use of SPC files is now a Coding Standard (see 4.1.17 Stored Procedure Call Files, above), you
don’t have to worry about this problem if your application is compliant with SBA ColdFusion Standards.

7.3.4 JDBC: CFSQLTYPE=”CF_SQL_DATE” Is No Longer Supported

CFSQLTYPE=”CF_SQL_DATE” Is No Longer Supported. The workaround is to use
CFSQLTYPE=“CF_SQL_TIMESTAMP”. This was also added to the SPC file generator.

Since the use of SPC files is now a Coding Standard (see 4.1.17 Stored Procedure Call Files, above), you
don’t have to worry about this problem if your application is compliant with SBA ColdFusion Standards.

SBA ColdFusion Programming Standards

Page 118 of 127 Version: 3.2.3
7. Programming Cautions Modified: 11/06/2008

7.3.5 JDBC: Nullstring Passed in CFPROCPARAM Behaves Like Space

In CF 4.5, passing VALUE=”” in CFPROCPARAM behaved exactly like passing NULL=”Yes”. Now it
does not. Rather, it behaves like passing VALUE=” “ (single space). This is an apparent compatibility of
JDBC with ODBC behavior, since the same thing can be observed in Microsoft SQL Server using ODBC
drivers.

Since this was a systemic problem affecting hundreds of stored procedure calls, and since the
DBVARNAME problem required going to generated Stored Procedure Call files anyway, the SPC file
generator was modified to generate the following on all non-bit input parameters:

<cfif Len(Variables.varname) GT 0>
 <cfprocparam ... value="#Variables.varname#" ...>
<cfelse>
 <cfprocparam ... null="Yes" ...>
</cfif>

Since the use of SPC files is now a Coding Standard (see 4.1.17 Stored Procedure Call Files, above), you
don’t have to worry about this problem if your application is compliant with SBA ColdFusion Standards.

7.3.6 JDBC: the Syntax “= NULL” Is No Longer Allowed

Use “IS NULL” instead.

7.3.7 JDBC: NULL Is Not a Value of a List, Either

Under CF 4.5, the following would be true if LoanAppEligEvalInd is NULL:

and LoanAppEligEvalInd NOT IN ("Y","N")

This is not true under CFMX, however, because NULL isn’t a value. Under CFMX, you need to specify:

and ((LoanAppEligEvalInd IS NULL)
 OR (LoanAppEligEvalInd NOT IN ("Y","N"))

7.3.8 JDBC: Stored Procedures Behave Differently Because of JDBC

The aforementioned details pertaining to JDBC apply to stored procedures too. Sybase somehow detects
that the call was via JDBC, and all of the JDBC rules apply within the stored procedure as well. No
saying “= NULL”. No treating NULL as a value of a list.

If you execute a stored procedure in a database tool, such as RapidSQL, DBArtisan or ISQL from a
command prompt, and it works just fine, but you do the exact same thing in ColdFusion MX and it
misbehaves, look for JDBC-sensitive code in the stored procedure.

SBA ColdFusion Programming Standards

Page 119 of 127 Version: 3.2.3
7. Programming Cautions Modified: 11/06/2008

7.3.9 StructKeyList

In ColdFusion 4.x and 5.x, the StructKeyList of a structure is in all upper case. But in ColdFusion MX,
it’s in the same case as the last CFSET that defined each element. (The reason is for compatibility with
XML, in which elements are case sensitive.) This can cause your code to malfunction if you are expecting
upper case and do a Find(), for example, instead of a FindNoCase(). Beware of this difference if you work
with structures a lot, particularly structures generated from XML.

7.3.10 JSessionId

At the discretion of the system admins, ColdFusion MX may use JSessionID, rather than CFID and
CFToken, to establish a session. See 3.2.10 Session Control (CFMX), above, for how to deal with
JSessionId in a way that won’t cause your code to fail.

7.3.11 Periods in Variable Names

Prior to ColdFusion MX, periods in variable names were allowed. In CFMX, they are not allowed.. If
CFMX locates a period and the left side of the period is not a scope or known structure, it creates a new
structure and defines everything to the right of the period as an element of that structure.

As a result, <cfset Variables.MyNewVar.WithAPeriod = 0> is legal before and after CFMX. Under 4.5, it
defines a new variable “MyNewVar.WithAPeriod” that contains 0. Under MX, it defines a new structure
“MyNewVar”, which contains a variable “WithAPeriod” that contains 0. Though not significantly
different, it allows variable names “containing periods”, so to speak, to be much longer.

7.3.12 When Calling Java Methods, Datatype May Not Be String

To deal with problems associated with datatype in previous versions of ColdFusion, all of our Java object
methods take Strings as input and return Strings as outputs. However, under some circumstances, such as
data from the database whose data type was datetime or int, ColdFusion may internally “type” the data as
non-String objects. Normally this doesn’t present a problem until you call a Java method.

Java methods can be “overloaded” (given the same name) and to distinguish 2 methods with the same
name, the parameters to the method (called the “signature” in Java terminology) are looked at. If a data
item is typed as a non-String datatype, the method will not be found (because, as said before, all of our
input parameters and return values are Strings).

The solution is to use a built-in ColdFusion function JavaCast that was specifically created for this exact
purpose. Ideally, the JavaCast call should be done as close to the Java method call as possible, so as to
eliminate the possibility that CF might retype the data as a non-String datatype. Ideally, the actual
parameters should be coded with JavaCast if there’s any chance that they could be considered non-String:

<cfset PrtId = MyJavaObj.GetPrtByLocId(JavaCast("String",LocId))>

SBA ColdFusion Programming Standards

Page 120 of 127 Version: 3.2.3
7. Programming Cautions Modified: 11/06/2008

7.3.13 The Data Validation for CFFORM Date Elements Is Incorrect

CFFORM generates its own JavaScripts for client-side data validation. In CFMX, the JavaScript for
validate=”Date” is incorrect. The workaround is to use our own EditDate or EditDateNonFuture
JavaScripts (See 4.6.3 and 4.6.4, above.)

In general, CFFORM doesn’t allow turning CFOUTPUT off and on, so if you’re going to use the SBA’s
JavaScripts anyway, it doesn’t make much sense to use CFFORM. If you can structure the code so as not
to turn CFOUTPUT off and on in the range of CFFORM, it might be worthwhile to use CFFORM in the
future, to take advantage of CFMX 7’s support of X/Forms.

SBA ColdFusion Programming Standards

Page 121 of 127 Version: 3.2.3
7. Programming Cautions Modified: 11/06/2008

7.4 ColdFusion MX 7.x (and Conversion to 7.x)

7.4.1 CR and LF Can No Longer Appear in CFLOCATION URLs

ColdFusion 4.5 through 6.1 would allow Carriage Return (CR) and/or Line Feed (LF) to be in
CFLOCATION URLs, provided that they were encoded with URLEncodedFormat. That’s no longer
allowed, because it was perceived to be a potential security vulnerability.

For more information, see

http://www.macromedia.com/cfusion/knowledgebase/index.cfm?id=46ba02fd

7.4.2 Double Slash in a Path Is No Longer Treated the Same as One Slash

Because a directory must have a name, Unix treats multiple adjacent slashes as equivalent to only one
slash. For example, /export//home/username is equivalent to /export/home/username. However,
ColdFusion is not Unix. It does its own parsing of paths, and as of CFMX 7, it treats multiple adjacent
slashes as significant.

This sort of thing happens when a directory name is supplied by a configuration parameter. Out of habit,
people typically add a trailing slash, to indicate that it’s a directory. Then later on, in the context of a
larger URL, an extra slash is given as a separator. For example:

Application.cfm:
<cfset Variables.LibURL = "/library/">

In a display page:
<cfmodule template="#Variables.LibURL#/customtags/mainnav.cfm"

In this example, because LibURL already contained a trailing slash, the resulting code in the display page
was, in effect:

<cfmodule template="/library//customtags/mainnav.cfm"

resulting in an error.

The solution is NOT to add a trailing slash in the definition of the configuration parameter. This allows
the slash to be added later when referenced, which makes for more easily readable code.

http://www.macromedia.com/cfusion/knowledgebase/index.cfm?id=46ba02fd�

SBA ColdFusion Programming Standards

Page 122 of 127 Version: 3.2.3
7. Programming Cautions Modified: 11/06/2008

7.4.3 CFOUTPUT Mode Partially Propagates to Included Files

If you had <cfsetting enablecfoutputonly=”Yes”> mode turned on under CF 4.x, 5.x or 6.x, and
CFOUTPUT mode was on, neither the generation of Web page output nor the resolution of
#Variables.something# would propagate through to a CFINCLUDE’d file. You would have to
specifically turn it back on with another CFOUTPUT in the included file.

But as of CFMX 7, the generation of Web page output propagates through to an include file. (The
resolution of #Variables.something# does not propagate through, but Web page output does.) This can
result in unwanted white space, which is what <cfsetting enablecfoutputonly=”Yes”> was meant to
eliminate.

The solution is to turn off CFOUTPUT mode before the CFINCLUDE and turn it back on afterwards, as
in this example:

</cfoutput><cfinclude template="myinclude.cfm"><cfoutput>

7.4.4 <cfset Variables.RequestTimeout = seconds> No Longer Works

This undocumented technique (publicized by Ben Forta) no longer works. For a complete discussion of
the problem and what to do about it, see 5.3.4 How to Change the “RequestTimeout” of a Page, above.

7.4.5 Web Services: Arguments Scope Evaluated Ahead of Variables Scope

It was actually documented in ColdFusion MX 6.1 that the Arguments scope was evaluated ahead of the
Variables scope. This was not the case in 6.1. In fact, the Variables scope was evaluated ahead of the
Arguments scope. But in CFMX 7, it’s true.

7.4.6 Web Services: Error Messages Have Gotten More Generic

In the past, Web Service error messages would often be quite specific, saying exactly the same error that
would appear in the “Gray Screen of Death” when a Web page errors. But sometimes now under CFMX
7, the only error we get is that the client was unable to invoke the Web Service, giving the impression that
there’s some sort of system problem, when the problem is really an unclosed quote, for example, or an
equals sign where there ought to be an “IS”.

This is why it’s advisable to have a Web page file upload interface to the same Web Service capability.
The Web page interface gives the “Gray Screen of Death”, with plenty of debugging information. This
provides a far more convenient way to debug code than the Web Services interface, at least until CFMX
Web Services are given back their more detailed error messages.

SBA ColdFusion Programming Standards

Page 123 of 127 Version: 3.2.3
7. Programming Cautions Modified: 11/06/2008

7.4.7 Web Services: An Empty XML Namespace URL Crashes Axis

If the XML that calls a Web Service has an empty URL, the Web Services system software (called
“Axis”) encounters an org.xml.SAXParseException and crashes. Advise clients not to do this. Example:

<MyPrefix:SBA_ETran xmlns:MyPrefix="" version="3.0">

The purpose in defining a prefix is to distinguish SBA’s XML from that of SOAP, the XML of Web
Services. This isn’t necessary, and the client doesn’t give the URL in the namespace declaration, it’s
worse than unnecessary, because it crashes the call. Advise clients to use the “default namespace” (that is,
don’t define a prefix), as in this example:

<SBA_ETran version="3.0">

7.4.8 Web Services: Application.cfc OnRequest Messes Up Web Services

ColdFusion MX 7 allows for a new and more powerful application framework. Instead of using
Application.cfm, CFMX 7 also allows using Application.cfc. If both are found, the newer technique
(Application.cfc) will be used and the older technique (Application.cfm) will be completely ignored.

The problem is that Application.cfc files are now automatically invoked by Web Services, and if the
OnRequest method is defined, Web Services crash. There is absolutely no way a Web Service can run if
an Application.cfc file exists in its path with OnRequest defined. This is very unfortunate, because the
OnRequest method is among the most useful and powerful of all Application.cfc methods. (OnRequest
can set Variables scope variables, making it ideal for <cfinclude template=”Application.cfm”>. In other
words, OnRequest is the quick upgrade path to Application.cfc that doesn’t require a major rewrite.)

Our current application organization structure is to put Web Services into a “/ws” subdirectory of the
application directory (example, /elend/ws). Therefore, if you want to use OnRequest, you cannot put
Application.cfc at the root directory of the application. In other words, this doesn’t work:

/myapproot
Application.cfc (with OnRequest)
/application_specific_shared_code_directories
/ws

mywebservices.cfc

You have to do it this way instead:

/myapproot
/application_specific_shared_code_directories
/web

Application.cfc (with OnRequest)
/ws

mywebservices.cfc

SBA ColdFusion Programming Standards

Page 124 of 127 Version: 3.2.3
8. Guidelines for Editing this Document Modified: 11/06/2008

8 Example Files

A common concern is that we have too many standards requirements for our programmers to remember
everything. Also, sometimes things have to be done in a particular order, and that information gets lost in
the maze of requirements. This section attempts to bring everything together into a few example files.

In each of the examples, you will see comments of the form (Std x.y.z) or (BP x.y.z). Std stands for
“Standard”. BP stands for “Best Practice”. The x.y.z part is a reference to the section of this document
that explains the standard or best practice in detail. In the electronic version of this document, you can
hold down the control key and click on the reference, and it will take you to that section. That is, the
control key turns the reference into a hotlink.

8.1 Web Page User Interfaces

In Web Page User Interfaces, you can have Session variables.

Under construction.

8.1.1 Example GLS Application.cfm

<cfsetting EnableCFOutputOnly="Yes"> (BP 5.3.11.5)
<!--- (Std 3.3.5)
AUTHOR: Jeremy Programerton
DATE: 09/20/2004
...
--->

<cfset Request.SBALogSystemName = "GLSSystemName"> (Std 4.3.1)
<cfinclude template="/library/cfincludes/inc_starttickcount.cfm"> (Std 4.3.7.1)

<!--- Configuration Parameters: ---> (BP 5.2.4)

<cfset Variables.LibURL = "/library"> (BP 5.2.1)
<cfset Variables.IncURL = "#Variables.LibURL#/cfincludes">
<cfset Variables.SpcURL = "/cfincludes">
<cfset Variables.RefURL = "#Variables.SpcURL#/sbaref">
<cfset Variables.FeedbackEmail = "jeremy.programmerton@sba.gov"> (BP 5.2.5)
<cfset Request.Version = "4.2.3"> (Std 3.2.6)

<!--- Establish Application and Session Scopes: --->

<cfapplication
 name = "GLS"
 clientmanagement = "No"
 applicationtimeout = "#CreateTimeSpan(0,1,0,0)#"
 sessionmanagement = "Yes"
 setclientcookies = "No"> (Std 3.3.7)
<cfinclude template="#IncURL#/get_sbalookandfeel_variables.cfm"> (Std 4.1.14)

8.1.2 Example Non-GLS Application.cfm

Under construction.

8.1.3 Example Display Page (dsp_xxx.cfm)

SBA ColdFusion Programming Standards

Page 125 of 127 Version: 3.2.3
8. Guidelines for Editing this Document Modified: 11/06/2008

Under construction.

8.1.4 Example Display Page in a Frame (dsp_xxx.cfm)

Under construction.

8.1.5 Example Action Page (act_xxx.cfm)

Under construction.

8.1.6 Example OnRequestEnd.cfm

In every directory in which you have an Application.cfm file that calls inc_starttickcount.cfm, create an
OnRequestEnd.cfm file containing the following:

<cfinclude template="/library/cfincludes/OnRequestEnd.cfm"> (Std 4.3.7.2)

Or, if you’ve parameterized your directory names and paths, as recommended in 5.2.1, use the name
you’ve defined. Example:

<cfinclude template="#Variables.IncURL#/OnRequestEnd.cfm"> (Std 4.3.7.2)

8.2 Web Services

In Web Services, you generally don’t have Session variables.

Under construction.

8.2.1 Example CFC File (xxx.cfc or wbs_xxx.cfc)

Under construction.

8.2.2 Example Included Function File (wbs_xxx.cfm)

Under construction.

SBA ColdFusion Programming Standards

Page 126 of 127 Version: 3.2.3
8. Guidelines for Editing this Document Modified: 11/06/2008

9 Guidelines for Editing this Document

9.1 Headers and Footers

After the title page, the Table of Contents section begins top of page header. Every section after the Table
of Contents has “Same as previous” as its header. Therefore, if you change the Table of Contents header,
it will automatically affect the entire document (except for the title page).

The footers, however, are just the opposite. Each section after the title page has its own footer that names
the section (Table of Contents, 1. Introduction, 2. Naming Conventions, etc). Therefore, if you want to
change version number or modified date, you will have to edit every section’s footer. Fortunately, global
search and replace works on the headers and footers. Furthermore, the version numbers on the title page
and all footers are consistent (“Version”, colon, space, version number), as are the last modified dates
(“Modified”, colon, space, date). This consistency was intentional, to aid in global search and replace.

9.2 Use of Microsoft Word “Styles” Feature

Insert > Reference > Cross-reference, Automatic numbering and Table of Contents generation will all be
automatically accurate if you adhere to the Styles defined for section/subsection numbering:
 x is “Heading 1”
 x.x is “Heading 2” (or, optionally “Heading 2 Page Break Before”)
 x.x.x is “Heading 3” (or, optionally “Heading 3 Page Break Before”)

To set a paragraph to a particular style, it’s generally easiest just to use the Styles drop-down menu (to the
left of the Font drop-down menu) at the time you begin the paragraph.

Other useful styles are already defined:

<This style is called "CodeExample" (Courier New and indented)>
<And this one is "CodeExample1", because it has one more indent>

<And there’s also "CodeExample2", with 2 more indents>
<This is "CodeExample3">

<This is "CodeExample4">
<But "CodeExample5" is as deep as it goes>
<You wouldn’t want to go deeper than "CodeExample5",
because the line would have tendency to wrap>

Every major tabular display has its own style associated with it, so that you can reformat just that tabular
display without affecting others. For example:

• SharedCodeLocation
• StepsList
• ToBeAvoidedH1 (not related to “Heading 1”, special emphasis Style used in 5.3.10)
• ToBeAvoidedH2 (not related to “Heading 2”, special emphasis Style used in 5.3.10)
• ToBeAvoidedH3 (not related to “Heading 3”, special emphasis Style used in 5.3.10)
• UtilityFilePrefixList

Rather than modifying these tables one paragraph at a time, it’s much easier in every way to modify the
Style and globally affect all paragraphs with that Style.

SBA ColdFusion Programming Standards

Page 127 of 127 Version: 3.2.3
8. Guidelines for Editing this Document Modified: 11/06/2008

9.3 Page Breaks

The following Styles were defined using Format > Paragraph > Line and Page Breaks > “Page break
before”. Other than that, they have the same properties as the Styles on which they were based:

 “Heading 2 Page Break Before”
 “Heading 3 Page Break Before”
 “Normal Page Break Before”

In general, you should use these styles in preference to Insert > Break > Page break.

9.4 Default Font and Size

The default font and size (defined in the “Normal” Style) is called “Times 7/11” by law firms. That is, the
font is Times New Roman, and the font size is 11-point for normal characters and 7-point for superscripts,
subscripts, etc. This is the closest approximation to book type, which most people can read fairly easily.
10-point is too small for some older folks’ vision, and 12-point generally seems too large. In addition, the
use of a serif font increases character recognition, again to help older folks’ vision, which is a Section 508
issue.

	1 Introduction
	1.1 Revision History

	2 Naming Conventions
	2.1 File Names
	2.1.1 Display Files (dsp_ prefix)
	2.1.2 Action Files (act_ prefix)
	2.1.3 Use CFLOCATION to Pass Off from an Action File to a Display File
	2.1.4 Utility Files (various prefixes)
	2.1.5 Always Match Case in File Names
	2.1.6 Backup Files

	2.2 Variable Names
	2.2.1 Database Column Names
	2.2.2 Datasource Names
	2.2.3 Temporary Control Variables
	2.2.4 Logic Variables
	2.2.5 XML Variables
	2.2.6 Standardized Variable Names Used by Shared Code

	3 Coding Standards, Application-Specific Code
	3.1 Application Model
	3.1.1 “Thin Client” and Client-Side Data Validation
	3.1.2 Server-Side Data Validation
	3.1.3 Standardized Look-and-Feel
	3.1.4 Our Goal Is 50% Shared Code
	3.1.5 Externally Configurable Code
	3.1.5.1 Support for Multiple Roles, Privileges, Location Codes and Office Codes
	3.1.5.2 Reading External Parameter Tables
	3.1.5.3 “New Style Logging”
	3.1.5.4 Database-Driven Form Elements, with Cached Queries
	3.1.5.5 What Can’t Be Externally Configured

	3.2 Application.cfm
	3.2.1 When and Where Required
	3.2.2 When Application.cfm Is Allowed in Subdirectories
	3.2.2.1 Turning Off GLS Login Requirement for Scheduled Tasks, Etc.

	3.2.3 Extending Application.cfm in a Subdirectory
	3.2.4 Initialization
	3.2.5 More on Initialization – Variables Scope versus Request Scope
	3.2.6 Set Request.Version to Identify your Application’s Version Number
	3.2.7 Never Use Client Scope – Requires a Waiver
	3.2.8 No Longer Any Need to Encrypt Application.cfm
	3.2.9 Session Control (CF 4.x and 5.x)
	3.2.10 Session Control (CFMX)
	3.2.11 Session Timeout
	3.2.12 Session Conflicts in GLS
	3.2.12.1 Keep All Subsystem-Related Data in a Session Object
	3.2.12.2 Don’t Alter Session Variables Set by Other Subsystems or by GLS Itself

	3.3 Security
	3.3.1 Referrer Checks
	3.3.2 Logins (Usernames and Passwords)
	3.3.3 Data Validation for SQL
	3.3.4 Shared (or “Generic”) Logins
	3.3.5 Program Descriptions (Also Known As “Comment Headers”)
	3.3.6 <form … method="post">
	3.3.7 Cookies
	3.3.8 File Upload Restrictions

	3.4 Database
	3.4.1 Structured Query Language (SQL) versus Stored Procedure Calls
	3.4.2 Use CFTRANSACTION, not CFLOCK, to Lock Database Changes

	3.5 Miscellaneous
	3.5.1 Browser Support (HTML, CSS and JavaScript)
	3.5.2 Section 508 Support

	4 Coding Standards, Shared Code
	4.1 SBA Look-and-Feel
	4.1.1 Screen Snapshot of SBA Look-and-Feel, Showing Page Regions
	4.1.2 Regions of the Page and What They’re Called
	4.1.3 Which Regions are Optional
	4.1.4 How to Call the SBA Look-and-Feel Custom Tag
	4.1.5 Controlling the MainNav Buttons with the Show Attribute
	4.1.6 How to Specify Inline HTML versus Frames
	4.1.7 When to Use Inline HTML and When to Use Frames
	4.1.8 What Happens When MainNav Is NOT a Frame
	4.1.9 What Happens When MainNav IS a Frame
	4.1.10 HOW to Use Inline HTML and HOW to Use Frames
	4.1.10.1 Special Problem – Executing JavaScript onLoad with an Inline Region
	4.1.10.2 Special Problem – Referencing a Frame

	4.1.11 What CSS Class Names to Use
	4.1.12 The Screen Resizing Feature
	4.1.13 The TextOnly Feature
	4.1.14 The Automatic TextOnly Feature
	4.1.15 Form Data Recovery
	4.1.16 Features Requiring Some Knowledge of JavaScript
	4.1.16.1 Controlling the “ReadyLight”
	4.1.16.2 Creating MainNav JavaScripts
	4.1.16.3 AppNav DHTML Tree Using <cf_sbatree> and <cf_sbatreeitem>
	4.1.16.4 Server Callbacks in the AppHidden Frame

	4.1.17 MainNav as a Frame
	4.1.18 Using SBA Look-and-Feel on a Static HTML Page
	4.1.19 Read the Custom Tags to Get More Information

	4.2 Stored Procedure Call Files
	4.2.1 Make Sure that the SPC Files Have Been Generated
	4.2.2 Request Regeneration of SPC Files Whenever Parameter Lists Change
	4.2.3 Load Only the Columns You Need into the Variables Scope
	4.2.4 But Use Defaults Sensibly
	4.2.5 Use LogAct to make error messages more user-friendly
	4.2.6 Use Variables.TxnErr for Transaction Control
	4.2.7 Retrieving Single Result Sets
	4.2.8 Retrieving Multiple Result Sets
	4.2.9 Calling a Stored Procedure in a Different Database
	4.2.10 How to use it

	4.3 Logging
	4.3.1 Turning On Logging Support – The “Master Switch”
	4.3.2 What to Use as the System Name – GLS Systems
	4.3.3 What to Use as the System Name – Non-GLS Systems
	4.3.4 All Developers Will Be Application Administrators in Development
	4.3.5 The CF/Logging Admin Pages
	4.3.6 Logging Levels – Debug, Info, Warn, Error and Fatal
	4.3.7 Manual Logging Routines That You’re Required To Add
	4.3.7.1 At Start of Request - inc_starttickcount.cfm
	4.3.7.2 At End of Request - OnRequestEnd.cfm
	4.3.7.3 log_SleQuery.cfm
	4.3.7.4 log_SleCatch.cfm

	4.3.8 Manual Logging Routines That Are Optional
	4.3.8.1 log_SleCustom.cfm
	4.3.8.2 log_SleTimeBeg.cfm, log_SleTimeEnd.cfm and log_SleTimeAccum.cfm
	4.3.8.3 log_SleTrace.cfm

	4.3.9 Where the Log Files Reside
	4.3.10 Cooperating With Other Developers in Development

	4.4 Standard Callbacks
	4.4.1 dsp_LookupZipToDropdown.cfm
	4.4.2 dsp_LookupZipToDropdown.ajax.cfm
	4.4.3 dsp_LookupNAICSDescTxt.ajax.cfm
	4.4.4 get_ArrayUserRoles.cfm
	4.4.5 get_GLSSession.cfm
	4.4.6 Future Callbacks

	4.5 Standard CFIncludes
	4.5.1 bld_ServerCachedQueries.cfm
	4.5.2 dsp_errmsg.cfm
	4.5.3 dsp_options.cfm
	4.5.4 dsp_sbalookandfeel_variables.cfm
	4.5.5 get_actual_server_name.cfm
	4.5.6 get_sbalookandfeel_variables.cfm
	4.5.7 inc_starttickcount.cfm
	4.5.8 inc_totaltickcount.cfm
	4.5.9 OnRequestEnd.cfm
	4.5.10 put_sbalookandfeel_messages.cfm
	4.5.11 put_sbalookandfeel_variables.cfm

	4.6 Standard JavaScripts
	4.6.1 Use onChange, Not onBlur
	4.6.2 Code for Reuse in the Form’s onSubmit
	4.6.3 EditDate
	4.6.4 EditDateNonFuture
	4.6.5 EditList
	4.6.6 EditMask
	4.6.7 EditPronetUserid
	4.6.8 EditState
	4.6.9 EditTin
	4.6.10 ClearForm
	4.6.11 DumpObject
	4.6.12 FormSynopsis
	4.6.13 GetXMLHttpRequest
	4.6.14 LookupNAICSDescTxt
	4.6.15 LookupZipToDropdown
	4.6.16 NumToDollars
	4.6.17 RoundTo2DecimalPlaces
	4.6.18 RoundToNearest
	4.6.19 RoundUpToNearest
	4.6.20 SetFormEltValue

	4.7 Standard UDFs and Other Utilities
	4.7.1 bld_GetCFDirectoryActionList.cfm
	4.7.2 bld_GetCFFileActionRead.cfm
	4.7.3 bld_JaguarUDFs.cfm
	4.7.4 bld_ListToArrayAllowingNulls.cfm
	4.7.5 bld_ProcessDirectory.cfm
	4.7.6 val_char.cfm
	4.7.7 val_date.cfm
	4.7.8 val_email.cfm
	4.7.9 val_num.cfm
	4.7.10 val_phone.cfm
	4.7.11 val_state.cfm
	4.7.12 val_taxid.cfm
	4.7.13 val_url.cfm
	4.7.14 val_zip.cfm

	5 Best Practices
	5.1 Improving Performance
	5.1.1 Eliminate Redundancies, Share Code
	5.1.2 Eliminate Redundancies, Share Code, part 2
	5.1.3 Limit Record Set Size
	5.1.4 Caching Result Sets
	5.1.5 Explicitly Scope Variables

	5.2 Code for Ease of Maintenance
	5.2.1 Parameterize Directory Names and Paths
	5.2.2 Indent Properly
	5.2.3 Line Up Code to Make It Easier to Read and Spot Errors
	5.2.4 Define Configuration Parameters at Top of Page
	5.2.5 Make LOTS of Things Configurable
	5.2.6 Document Your Code: Use “Hints”
	5.2.7 Document Your Code: Use Comments for Actual Comments
	5.2.8 Document Your Code: Use Descriptive Datanames

	5.3 The “Right Way To Do It”
	5.3.1 Use CFLOCK to Lock Server, Application, and Session Variables
	5.3.2 Structured Query Language (SQL) in JDBC
	5.3.3 Checking for Existence of CGI Variables
	5.3.4 How to Break Out of Frames
	5.3.4.1 Breaking Out using HTML
	5.3.4.2 Breaking Out using JavaScript
	5.3.4.3 Always Use the HTML Method Wherever Possible

	5.3.5 How to Change the “RequestTimeout” of a Page
	5.3.6 Dynamic HTML
	5.3.6.1 General Principles and Section 508 Issues
	5.3.6.2 Left-Side Navigation Trees
	5.3.6.3 A Trick to Make Sure the Left-Side Navigation Tree Matches “Save/Next”
	5.3.6.4 Putting Data Elsewhere on a Page
	5.3.6.5 How to Show and Hide Page Elements Dynamically
	5.3.6.6 How to Change Page Element Classes Dynamically

	5.3.7 How to Create an HTML Equivalent of a Graphic for TextOnly Mode
	5.3.8 BLOBs, CLOBs and Text Datatypes, and CFQueryParam
	5.3.9 SQL Injection, Data Validation and CFQueryParam
	5.3.10 Cross-Browser HTML and JavaScript for Internet Sites
	5.3.11 Suppressing Extraneous “White Space”
	5.3.11.1 What Causes It
	5.3.11.2 When It Can Be a Serious Problem
	5.3.11.3 Suppressing White Space with CFSilent (Easy, But Not Too Flexible)
	5.3.11.4 Suppressing White Space with CFProcessingDirective (Doesn’t Propagate)
	5.3.11.5 Suppressing White Space with EnableCFOutputOnly Mode (Absolute Control)

	5.4 Debugging
	5.4.1 Don’t Turn On CF Debugging Unless You Absolutely Have To
	5.4.2 Use CFDUMP to Debug in ColdFusion MX

	6 Application Deployment
	7 Programming Cautions (“Gotchas” We’ve Discovered)
	7.1 All Versions of ColdFusion
	7.1.1 CFPROCRESULT
	7.1.2 Calling a Java Method
	7.1.3 Frequent Server Crashes

	7.2 ColdFusion 4.5
	7.2.1 The “Randomly Zeroed Out Money Fields” Problem
	7.2.2 Sometimes You Get Errors on the Next Database Call
	7.2.3 Sybase Error 3621
	7.2.4 “Unknown Connect error!”

	7.3 ColdFusion MX 6.x (and Conversion to MX in General)
	7.3.1 JDBC: Like ODBC, Delimit Non-Numeric Literals with Single Quotes
	7.3.2 JDBC: Parameters to Stored Procedures Must Be in Correct Order
	7.3.3 JDBC: Designation of Input and Output Parameters Must Be Correct
	7.3.4 JDBC: CFSQLTYPE=”CF_SQL_DATE” Is No Longer Supported
	7.3.5 JDBC: Nullstring Passed in CFPROCPARAM Behaves Like Space
	7.3.6 JDBC: the Syntax “= NULL” Is No Longer Allowed
	7.3.7 JDBC: NULL Is Not a Value of a List, Either
	7.3.8 JDBC: Stored Procedures Behave Differently Because of JDBC
	7.3.9 StructKeyList
	7.3.10 JSessionId
	7.3.11 Periods in Variable Names
	7.3.12 When Calling Java Methods, Datatype May Not Be String
	7.3.13 The Data Validation for CFFORM Date Elements Is Incorrect

	7.4 ColdFusion MX 7.x (and Conversion to 7.x)
	7.4.1 CR and LF Can No Longer Appear in CFLOCATION URLs
	7.4.2 Double Slash in a Path Is No Longer Treated the Same as One Slash
	7.4.3 CFOUTPUT Mode Partially Propagates to Included Files
	7.4.4 <cfset Variables.RequestTimeout = seconds> No Longer Works
	7.4.5 Web Services: Arguments Scope Evaluated Ahead of Variables Scope
	7.4.6 Web Services: Error Messages Have Gotten More Generic
	7.4.7 Web Services: An Empty XML Namespace URL Crashes Axis
	7.4.8 Web Services: Application.cfc OnRequest Messes Up Web Services

	8 Example Files
	8.1 Web Page User Interfaces
	8.1.1 Example GLS Application.cfm
	8.1.2 Example Non-GLS Application.cfm
	8.1.3 Example Display Page (dsp_xxx.cfm)
	8.1.4 Example Display Page in a Frame (dsp_xxx.cfm)
	8.1.5 Example Action Page (act_xxx.cfm)
	8.1.6 Example OnRequestEnd.cfm

	8.2 Web Services
	8.2.1 Example CFC File (xxx.cfc or wbs_xxx.cfc)
	8.2.2 Example Included Function File (wbs_xxx.cfm)

	9 Guidelines for Editing this Document
	9.1 Headers and Footers
	9.2 Use of Microsoft Word “Styles” Feature
	9.3 Page Breaks
	9.4 Default Font and Size

